

.

CONNECTIONIST
In our quest to build intelligent
machines, we have but one naturally
occurring model: the human brain.
It follows that one natural idea for
artificial intelligence (AI) is to
simulate the functioning of the
brain directly on a computer. In-
deed, the idea of building an in-
telligent machine out of artificial
neurons has been around for quite
some time. Some early results
on brain-line mechanisms were
achieved by [18], and other resear-
chers pursued this notion through
the next two decades, e.g., [1, 4, 19,
21,241. Research in neural networks
came to a virtual halt in the 197Os,
however, when the networks under
study were shown to be very weak
computationally. Recently, there
has been a resurgence of interest in
neural networks. There are several
reasons for this, including the ap-
pearance of faster digital com-
puters on which to simulate larger
networks, interest in building
massively parallel computers, and
most importantly, the discovery of
powerful network learning
algorithms.

The new neural network archi-
tectures have been dubbed connec-
tion& architectures. For the most
part, these architectures are not
meant to duplicate the operation of
the human brain, but rather receive
inspiration from known facts about
how the brain works. They are
characterized by

l Large numbers of very simple
neuron-like processing elements;

l Large numbers of weighted con-
nections between the elements-
the weights on the connections
encode the knowledge of a
network;

l Highly parallel, distributed con-
trol; and

l Emphasis on learning internal
representations automatically.

Connectionist researchers con-
jecture that thinking about compu-
tation in terms of the brain
metaphor rather than the digital
computer metaphor will lead to in-
sights into the nature of intelligent
behavior.

Computers are capable of amaz-
ing feats. They can effortlessly store
vast quantities of information.
Their circuits operate in nanosec-
onds. They can perform extensive
arithmetic calculations without
error. Humans cannot approach

these capabilities. On the other
hand, humans routinely perform
simple tasks such as walking, talk-
ing, and commonsense reasoning.
Current AI systems cannot do any
of these things better than humans.
Why not? Perhaps the structure of
the brain is somehow suited to these
tasks, and not suited to tasks like
high-speed arithmetic calculation.
Working under constraints sug-
gested by the brain may make tradi-
tional computation more difficult,
but it may lead to solutions to AI

AND
problems that would otherwise be
overlooked.

What constraints, then, does the
brain offer us? First of all, indi-
vidual neurons are extremely slow
devices when compared to their
counterparts in digital computers.
Neurons operate in the millisecond
range, an eternity to a VLSI de-
signer. Yet, humans can perform
extremely complex tasks, like inter-
preting a visual scene or under-
standing a sentence, in just a tenth
of a second. In other words, we do
in about a hundred steps what cur-

rent computers cannot do in ten
million steps. How can this be pos-
sible? Unlike a conventional com-
puter, the brain contains a huge
number of processing elements
that act in parallel. This suggests
that in our search for solutions, we
look for massively parallel algo-
rithms that require no more than
100 processing steps [9].

Also, neurons are failure-prone
devices. They are constantly dying
(you have certainly lost a few since
you began reading this article), and
their firing patterns are irregular.
Components in digital computers,
on the other hand, must operate
perfectly. Why? Such components
store bits of information that are
available nowhere else in the com-
puter: the failure of one component
means a loss of information. Sup-
pose that we built AI programs that
were not sensitive to the failure of a
few components, perhaps by using
redundancy and distributing infor-
mation across a wide range of com-
ponents? This would open the
possibility of very large-scale im-
plementations. With current
technology, it is far easier to build a
billion-component integrated circuit
in which 95 percent of the com-
ponents work correctly than it is to
build a perfectly functioning mil-
lion-component machine [S].

Another thing people seem to be
able to do better than computers is
handle fuzzy situations. We have
very large memories of visual, au-
ditory, and problem-solving epi-
sodes, and one key operation in
solving new problems is finding
closest matches to old situations. In-
exact matching is something brain-
style models seem to be good at,
because of the diffuse and fluid way
in which knowledge is represented.

The idea behind connectionism,
then, is that we may see significant
advances in Al if we approach

ALGORWHMS milghilt
COYUUWICATIONSOFT”EliOM/November 199O/Vol.33, No.lJ 59

.0...

problems from the point of view of
brain-style computation rather than
rule-based symbol manipulation. At
the end of this article, we will look
more closely at the relationship be-
tween connectionist .and symbolic
AI.

Hopileld Netwwfks

The history of AI is curious. The
first problems attacked by AI re-
searchers were problems like chess
and theorem proving, because
these were thought to require the
essence of intelligence. Vision and
language understanding-process-
es easily mastered by five-year-olds-
were not thought to be difficult.
These days, we have expert chess
programs, and expert medical di-
agnosls programs, but no programs
that can match the basic perceptual
skills of a child. Neural network
researchers contend that there is a
basic mismatch beltween standard
computer information-processing
technology and the technology
used by the brain.

In addition to these perceptual
tasks, AI is just starting to grapple
with fundamental problems in
memory and commonsense reason-
ing. Computers are notorious for
their lack of common sense. Many
people believe that common sense
derives from our massive store of
knowledge, and more importantly,
our ability to access relevant knowl-
edge quickly, effortlessly, and at the
right time.

When we read the description
“gray, large, mammal,” we auto-
matically think of elephants and
their associated featu-res. We access
our memories by content. In tradi-
tional implementations, access by
content involves expensive search-
ing and matching procedures. Mas-
sively parallel networks suggest a
more efficient metlhod.

A neural networlk, introduced by
Hopfield [121, proposed one theory
of memory. A Hopfield network
has the following interesting fea-
tures:

l Distributed representation. A mem-
ory is stored as a pattern of acti-

60

vation across a set of processing
elements. Furthermore, memo-
ries can be superimposed upon
one another-different memo-
ries are represented by different
patterns over the .same set of pro-
cessing elements.

l Distributed, asynchronous control.
Each processing element makes
decisions based only on its own
local situation. All of these local
actions add up to a global solu-
tion.

l Content-addressable memory. A
number of patterns can be stored
in a network. To retrieve a pat-
tern, we need only specify a por-
tion of it. The network automati-
cally finds the closest match.

l Fault tolerance. If a few of the pro-
cessing elements misbehave or
fail completely, the network will
still function properly.

How are these features achieved?
A simple Hopfield net is shown in
Figure 1. Processing elements, or
units, are always in one of two states,
active or inactive. Units are con-
nected to each other with weighted,
symmetric connections. A positive
connection indicates that the two
units tend to activate each other. A
negative connection allows an active
unit to deactivate a neighboring
unit.

The network operates as follows.
A random unit is chosen. If any of
its neighbors are active, the unit
computes the sum of the weights on
the connections to those active
neighbors. If the sum is positive,
the unit becomes active, otherwise it
becomes inactive. Another random
unit is chosen, and the process re-
peats until the network reaches a
stable state (i.e., until no more units
can change state). This process is
called parallel relaxation. If the net-
work starts in the state shown in
Figure 1, the unit in the lower left
corner will tend to activate the unit
above it. This unit, in turn, will at-
tempt to activate the unit above it,
but the inhibitory connection from
the upper-right unit will foil this
attempt, and so on.

This network has only four dis-
tinct stable states. They are shown
in Figure 2. Given any initial state,
the network will necessarily settle
into one of these four contigura-
tions.’ The network can be thought
of as storing the patterns in Figure
2. Hopfield’s major contribution
was to show that given any set of
weights and any initial state, his
parallel relaxation algorithm would
eventually steer the network into a
stable state. There can be no diver-
gence or oscillation.

The network can be used as a
content-addressable memory by setting
the activities of the units to corre-
spond to a partial pattern. The net-
work will then settle into the stable
state that best matches the partial
pattern. An example is shown in
Figure 3.

Parallel relaxation is nothing
more than search, albeit of a style
not usually employed in AI. It is
useful to think of the various states
of a network as forming a search
space as in Figure 4. A randomly
chosen state will ultimately trans-
form itself into one of the local
minima namely the nearest stable
state. This is how we get the con-
tent-addressable behavior. We also
get an error-correcting behavior.
Suppose we read the description,
“gray, large, fish, eats plankton.”
We imagine a whale, even though
we know that a whale is a mammal,
not a fish. Even if the initial state
contains inconsistencies, a Hopfield
network will settle into the solution
that violates the fewest constraints
offered by the inputs. Traditional
match-and-retrieve procedures are
less forgiving.

Now, suppose a unit occasionally
fails, say, by becoming active or in-
active when it should not. This
causes no major problem: sur-
rounding units will quickly set it
straight again. It would take the
unlikely concerted effort of many
errant units to push the network
into the wrong stable state. In net-
works of thousands of more highly
interconnected units, such fault tol-

The stable state in which all units are inactive
can onlv he reached ifit is also the initial state.

November 199O/Vo1.33, No.lllCOYYUNlCITIOW5OFTWEICY

.

erance is even more apparent-
units and connections can disap-
pear completely without adversely
affecting the overall behavior of the
network.

As we can see, parallel networks
of simple elements can compute
interesting things. The next impor-
tant question is: What is the rela-
tionship between the weights on the
network’s connections and the local
minima into which it settles? In
other words, if the weights encode
the “knowledge” of a particular
network, how is that knowledge
acquired? Knowledge acquisition is
a difficult problem in AI, and one
attractive feature of connectionist
architectures is that their method of
representation (namely, real-valued
connection weights) lends itself
very nicely to automatic learning.

In the next section, we will look
closely at learning in several neural
network models, including per-
ceptrons, backpropagation net-
works, and Boltzmann machines.

Learnlng In Neural
Networks

The fierc@ptron, an invention of [24]
was one of the earliest neural net-
work models. A perceptron models
a neuron by taking a weighted sum
of its inputs and sending an output
I if the sum is greater than some
adjustable threshold value (other-
wise it sends 0). Figure 5 shows the
device.

The inputs (xt, x2 x,,) and
connection weights (rut, wZ w,,)
in the figure are typically real val-
ues, both positive and negative. If
the presence of some feature x,
tends to cause the perceptron to
fire, the weight w, will be positive; if
the feature X, inhibits the per-
ceptron, the weight w; will be nega-
tive. The perceptron itself consists
of the weights, the summation pro-
cessor, and the adjustable threshold
processor. Learning is a process of
modifying the values of the weights
and the threshold. It is convenient
to implement the threshold as just
another weight wg (as in Figure 6).
This weight can be thought of as
the propensity of the perceptron to

FIGURE I. A Simple Hopfield network. Units have binary states (black represents “on” and
White represents “off”), and connectlon weights are symmetric.

. ..I

-1

+l -l +3
-1 clc253 +2 +l +3

-2

+l -1

-1

+l -l +3
-1 clzii +2 +l +3

-2

+l -1

.
-1

+l -l +3
-1 a!iiii +2 +1 +3

-2

+l -1

-1

+l -l +3
-1

izii

+2 +l +3
-2

+l -1

FIGURE 2. The four stable states of a Particular Hopfleld net.

.

FIGURE 3. A Hopfield net as a model of content-addressable memory. To retrieve a Pattern,
we need only supply a portion of it.

.

FIGURE 4. A simplifitid view of what a Houfleld net computes.

COYMUNICATIONSOCT”EACM/November 199O/Vo1.33, No.11 61

.a....................................**...................................

fire irrespective of its inputs. The
perceptron of Figure 6 fires if the
weighted sum is greater than zero.

A perceptron computes a binary
function of its input. Multiple per-
ceptrons can be combined to com-
pute more complex functions, as
shown in Figure 7.

Such a group of perceptrons can
be trained on sample input/output
pairs until it learns to compute the
correct function. The amazing
property of perceptron learning is
this: whatever a lperceptron can
compute, it can lea:m to compute!
We will demonstrate this in a mo-
ment. At the time perceptrons were
invented, many people speculated
that intelligent systems could be
constructed out of perceptrons (see
Figure 8).

Since the perceptrons of Figure 7
are independent of one another,
they can be separately trained. Let
us concentrate on what a single per-
ceptron can learn to do. Consider
the pattern classification problem
shown in Figure 9. Given values for
xt and x2, we want to train a per-
ceptron to output 1 if it thinks the
input belongs to the class of white
dots, and 0 if it think:s the input be-
longs to the class of black dots. We
have no explicit rule IO guide us; we
must induce a rule from a set of
training instances. We will now see
how perceptrons can learn to solve
such problems.

First, it is necessary to take a close
look at what the perceptron com-
putes. Let 2 be an input vector (XI,
xp . . x,,). Notice that the weighted
summation function g(x) and the
output function o(:T) can be defined
as:

g(x) = iW$; ;;;(j

o(x) = 1
1 if g(x) > 0
0 if g(x) < 0

Consider the case where we have
only two inputs (as in Figure 9).
Then:

964 = W,) + WlXl + w2x2

Ifg(x) is exactly 0, the perceptron

cannot decide whether to fire or
not. A slight change in inputs could
cause the device to go either way. If
we solve the equation g(x) = 0, we
get the equation for a line:

WI wo
x2=--x1--

WP WZ

The location of the line is com-
pletely determined by the weights
wet WI 3 and ~2. If an input vector
lies on one side of the line, the per-
ceptron will output 1; if it lies on
the other side, the perceptron will
output 0. A line that correctly sepa-
rates the training instances corre-
sponds to a perfectly functioning
perceptron. Such a line is called a
decision surface. In perceptrons with
many inputs, the decision surface
will be a hyperplane through the
multidimensional space of possible
input vectors. The problem of
learning is one of locating an ap-
propriate decision surface.

We will present a formal learning
algorithm in a moment. For now,
consider the informal rule:

If the perceptron fires when it
should not fire, make each w;
smaller by an amount propor-
tional to x,. If the perceptron
fails to fire when it should fire,
make each w, larger by a simi-
lar amount.
Suppose we want to train a three-

input perceptron to fire only when
its first input is on. If the per-
ceptron fails to fire in the presence
of an active xl, we will increase wt
(and we may increase other
weights). If the perceptron fires
incorrectly, we will end up decreas-
ing weights that are not wt. In addi-
tion, wg will find a value based on
the total number of incorrect fir-
ings versus incorrect misfirings.
Soon, WI will become large enough
to overpower wn. while w2 and ws
will not be powerful enough to fire
the perceptron, even in the pres-
ence of both xp and xs.

Now let us return to the func-
tions g(x) and o(x). While the sign of
g(x) is critical to determining
whether the perceptron will fire,
the magnitude is also important.

The absolute value of g(x) tells how
far a given input vector 3 lies from
the decision surface. This gives us a
way of characterizing how good a
set of weights is. Let 3 be the weight
vector (wg, wt . . w,,), and let X be
the subset of training instances mis-
classified by the current set of
weights. Then define the Perceptron
Criterion Function, J(S), to be the
sum of the distances of the misclas-
sified input vectors from the deci-
sion surface:

J(3) = c gwpz, = c (rdfl I I PEX i=n IEX

To create a better set of weights
than the current set, we would like
to reduce J(8). Ultimately, if all
inputs are classified correctly,
J(3) = 0.

How do we go about minimizing
J(m)? We can use a form of local
search known as gradient descent.2
For our current purposes, think of
J(3) as defining a surface in the
space of all possible weights. Such a
surface might look like the one in
Figure 10.

In the figure, weight wg should
be part of the weight space, but is
omitted here because it is easier to
visualize J in only three dimensions.
Now, some of the weight vectors
constitute solutions, in that a per-
ceptron with a solution vector will
classify all of its inputs correctly.
Note that there are an infinite
number of solution vectors. For any
solution vector 3,,, we know that
J(3,) = 0. Suppose we begin with a
random weight vector 3 that is not
a solution vector. We want to slide
down the J surface. There is a
mathematical method for doing
this-we compute the gradient of
the function]@). Before we derive
the gradient function, we will refor-
mulate the Perceptron Criterion
Function to remove the absolute
value sign:

JV) =z
Z’ if 5F’ is misclassified

iz
SEX

as a negative example
-3 if f is misclassified

as a positive example

62 November 199O/Vo1.33. No.11 ,COMY”WlCATlOWI OF T”E ACM

.

=I w1
w2

=2 “3

b
=3 z

=n
W

n

FIGURE 5. A neuron and a perceptron.

*...............................e.......

7. A perceptron with many inputs and many outputs.

actions on

positk&egative
threshold

eacuR6 6. Perceptron with adlustable threshOld implemented
as additional weight rv,.

i FIGURE 8. An early notion Of an intelligent System built
: out of trainable perceptrons.

.
.

.

.

.

.
.

.

.

.

..a a

.

.

.

.

.

.

.

.

.

.

.

.

0 r . . . 0 0 0 0.
FlCURE 3. A Patton rlassifkatlon problem. This problem Is
linearly separable, because we can draw a line that separates one
class from another.

.

I
J&

solution space

FIGURE 10. Adjusting the weights by gradient descent,
_ mlnimizlng I(i). (weight IV, is omitted for ClarltVl.

63

.a...

Recall that X is the set of misclassi-
fied input vectors.

Now, here is VJ, the gradient of
J(3) with respect to the weight
space:

VJ(W =c
f if x’ is misclassified

.TE.X as a negative example
-T if Z’ is misclassified

(as a positive example

The gradient is a vector that tells
us the direction to move in weight
space in order to reduce J(3). In
order to find a solution weight vec-
tor, we simply change the weights
in the direction of the gradient, re-
compute J(3) recompute the new
gradient, and iterate until J(3) = 0.
The rule for updating the weights
at time t + 1 is:

Or in expanded form:

sif,,, =73,-t

rlc
2

I

if R is misclassified

PEX
as a negative example

-2 if R is misclassified
as a positive example

77 is a scale factor that tells us how
far to move in the adirection of the
gradient. A small 71 will lead to
slower learning, but a large 77 may
cause a move through weight space
that “overshoots” the solution vec-
tor. Taking 77 to be a constant gives
us what is usually called the “fixed-
increment perceptron learning al-
gorithm”:

Algorithm: FlxeU-#ncrement
Perceptron Learmlng
Given: a classification problem with
n input features (x1, -1~2 . x,,) and
two output classes.

Compute: a set of weights w,), w,,
w:! . . w,,) that will cause a per-
ceptron to fire whenever the input
falls into the first output class.

1. Create a perceptron with n + 1
inputs and n + 1 weights, where
the extra input x’” is always set to
1.

2. Initialize the weights (w,,, w, . . .
w,,) to random real values.

3. Iterate through the training set,
collecting all of the examples
misclassified by the current set of
weights.

4. Ifall examples are classified cor-
rectly, output the weights and
quit.

5. Otherwise, compute the vector
sum S of the misclassified input
vectors, where each vector has
the form (x0, x1 . . x,,). In creat-
ing the sum, add to S a vector P
if Z’ is an input for which the
perceptron incorrectly fails to

fire, but add vector -? if 3 is an
input for which the perceptron
incorrectly fires. Multiply the
sum by a scale factor 77.

6. Modify the weights (w,,, WI .
w,,) by adding the elements of
the vector S to them. Go to
step 3.

The perceptron learning algo-
rithm is a search algorithm. It be-
gins in a random initial state and
finds a solution state. The search
space is simply all of the possible
assignments of real values to the
weights of the perceptron, and the
search strategy is gradient descent.

So far, we have seen two search
methods employed by neural net-
works: gradient descent in per-
ceptrons and parallel relaxation in
Hopfield networks. It is important
to understand the relation between
the two. Parallel relaxation is a
problem-solving strategy, analo-
gous to state space search in sym-
bolic AI. Gradient descent is a
learning strategy, analogous to in-
ductive techniques in symbolic AI.
In both symbolic and connectionist
AI, learning is viewed as a type of
problem solving, and this is why
search is useful in learning. But the
ultimate goal of learning is to get a
system into a position where it can
solve problems better. Do not con-
fuse learning algorithms with oth-
ers.

The Perceptron Convergence Theo-
rem, due to Rosenblatt [24], guaran-
tees that the perceptron will find a
solution state (i.e.. it will learn to

classify any linearly separable set of
inputs). Figure 11 shows a per-
ceptron learning to classify the in-
stances of Figure 9. Remember that
every set of weights specifies some
decision surface-in this case some
two-dimensional line.

The introduction of perceptrons
in the late 1950s created a great
deal of excitement in the research
community. Here was a device that
strongly resembled a neuron and
for which well-defined learning
algorithms were available. There
was much speculation about how
intelligent systems could be con-
structed from perceptron building
blocks. The book, Perceptrons, [20]
put an end to such speculation by
analyzing the computational capa-
bilities of the devices. The authors,
Minsky and Papert, noticed that
while the Convergence Theorem
guaranteed correct classification of
linearly separable data, most prob-
lems do not supply such nice data.
Indeed, the perceptron is incapable
of learning to solve some very sim-
ple problems. One example given
in the book is the exclusive-or
(XOR) problem: Given two binary
inputs, output 1 if exactly one of the
inputs is on, and output 0 other-
wise. We can view XOR as a pat-
tern-classification problem in which
there are four patterns and two
possible outputs (see Figure 12).

The perceptron cannot learn a
linear decision surface to separate
these different outputs, because no
such decision surface exists. No single
line can separate the “1” outputs
from the “0” outputs. Minsky and
Papert gave a number of problems
with this property: telling whether
a line drawing is connected, sepa-
rating figure from ground in a pic-
ture, etc. Notice that the deficiency
here is not in the perceptron learn-
ing algorithm, but in the way the
perceptron represents knowledge.

If we could draw an elliptical
decision surface, we could encircle
the two “1” outputs in the XOR
space. However, perceptrons are
incapable of modeling such sur-
faces. Another idea is to employ two
separate line-drawing stages. We

November 199O/Vo1.33, No.ll/COYMUNICITIONSOFTREAC.CY

.

could tlixw one line to isolate the
point (xt = I, x2 = I) and then ;ttt-
other line to divide the t-entainitig
Lllt.ee points into t\vo categories.
Using this idea, we cm construct a
tiiultilaycl- petxxptroti (a series of
lmqm-ms) to solve the poblem.
Such ;I clevicc is slio~vn in Figure I :4.

NOW how the output of‘ the first
petxq~tron serves as me of‘ the in-
p’s to the secotitl perceptroti, with
a large, ticg;ltively wciglitecl con-
ncction. If the first lxrcelmw~ sees
the input (xt = I, s:! = I) it will send
:t tttassive itihibitot~y l~ulsc to the
sccot~tl pet~celmw~. causing that
unit to oull~ut 0 txprdlcss of its
other inputs. If’eitlier of ittputs is 0,
the second l~ercel~troti gets ii0 itilii-
bition f‘rotn the first percepttwit,
attd it outputs I if’ citliet. of‘ the itt-
puts is I.

l‘he LISC of‘ ttiultilayer pa.-
ceptrons. then, solves our know-
CtlgC t~el~t~escnt;ttioti pt‘ol~lem.
IHowever, it intt-otluces it serious
learning l~td~lem: the Cotivcrgettce
‘l‘lteotxm1 does not cxtettcl to tiittlti-
layer lxt~cep~txms. .l‘lte pcrcepttx~tt
himing ;tlgot~i~htit cati correctI)
adjust weights between ittpitts and
outplrts. but it cattitot x~just
weights /w/~wP~~ perceptrotis. In
ITigrtrc 13, tlic itiliibitot~y weight
“-0.0” \\‘;I!4 llatltl-coded, not
Ica~metl. At tltc time I’c~~c~p~~xv w;ts
l~ttblisltctl, no otlc knelt how multi-
layer lxrccl~~rotis cottltl be tiiatlc to
lwtm. In fitct, Minsky and I’apt
sl”ctllalccl:

‘l‘lte p”l‘c”l’tl‘otl has tltally
l’eatutw that ;i~lr;tct altctitioti:
its li1tc;trity. its it1triguing
Icariiitig theot~m there is
I10 I‘c’~Isotl to suppos’ that all),

01’ tltcse virtues carry over to
the titait)~-l;tyercd version.
Ncverthcless, WC cottsitlet. it to
IX ;1tt ititl~ot~t;tttt tTsc;ux:ll

l~txd~lc~tt to clucitlate (or tx-
,jcct) our ittlttitive ,jtttlgement
tltat the estuisiot1 is stciile.
Despite the idetttil’ic;ttiott 01‘ this

iti1lx~1~t~tttt t~~~r~lt l~rol~letit. ;tctLt;tl
rcscat~clt it1 perrcplroti learning
cattic IO ;I lt;dt itt tlte IYiOs. ‘l‘he
field s;t\v little ititctwt until the
I!)HOs. \vhcti sevcixl learning prw

X2
A k=lO

0

0

1 k wo WI w2

FIGURE 19. A perceptron learning to solve a classification problem. Ii is the number of
Passes through the training data (i.e., the number of iterations of steps 3 through 6 of the
fixed-increment perceptron learning algorithml.

10 0.41 -0.17 0.14

100 0.22 -0.14 0.11

300 -0.10 -0.08 0.07

635 -0.49 -0.10 0.14

.

I.
I’

FIGURE 12. A classification problem, XOR, that is not linearly separable.

.

FIGURE II. A multilayer perceptron that solves the XOR problem.

. ..*o...

cedures to1 multilayer per-
ceptron-also callctl multilayel
networks-were proposed. The
next few sections are devoted to
such learning procedures.

Sackpropagation 1Uetworks
As suggested by Figure 8 and the
I-‘~t-crf~lro~ls critique, the ability to
train multilayer networks is an im-
portant step in the direction of
building intelligent machines out of
neuron-like components. Let us
reflect for a moment on why this is
so. Our goal is to take a relatively
amorphous mass of neuron-like
elements and teach it to perform
usef’ul tasks. We would like it to be
f;tst and resistant to damage. We
would like it to generalize from the
inputs it sees. We would like to
b~lilcl these neural masses on a very
large scale, and we wo~~ld like them
to be able to learn ef‘ficiently. Per-
ceptrons got us part of’ the way
there, but we say that they were too
weak coml,Lltationally. So we turn
to more complex, multilayer net-
works.

What can a multilayer network
compute? l‘he simple answer is:
cor\~thi,q! Given a sel: of inputs, we
can use suliimatiori/lhl.eshold units
as simple AND, OK. and NOT
gates by appropriately setting the
threshold and connection weights.
We can build any arbitrary combi-
national circuit out of such units. In
f’,lct, if we are allolzed to use feed-
back loops, we can build a general-
purpose computer with them.

The major problem is learning.
The knowledge representation sys-
tem employed by neural nets is
quite opaque: they ~lust learn their
own representations because pro-
Cgranlming them by lland is impossi-
ble. I’erceptrons had the nice prop-
erty that whatever they could
compute, they could learn to com-
pute. Does this property extend to
multilayer networks? The answer is
yes, sort of’. Backpropqation is a
step in that direction.

It will be useful to deal first with
a subclass of’ multilayer networks,
namely full), conmecled, layered,
feeclforward networks. A sample of

such a network is shown in Figure
14. This network has three layers,
although it is possible and some-
times useful to have more. Activa-
tions flow from the input layer
through a hidden layer, then on to
the output layer. Each unit in one
layer is connected in the forward
direction to every unit in the next
layer. As usual, the knowledge of
the network is encoded in the
weights on connections between
units. In contrast to the parallel re-
laxation method used by Hopfield
nets, backpropagation networks
perform a simpler computation.
Because activations flow in only one
direction, there is no need for an
iterative relaxation process. The
activation levels of the units in the
output layer determine the output
of’ the network.

The existence of hidden units
allows the network to develop com-
plex feature detectors, or i~fer~cll
,.c,~~~,sc~rltcltio,~s. Figure 15 shows the
application of a three-layer network
to the problem of recognizing dig-
its. The t\\,o-dimensional grid con-
taining the numeral “7” forms the
input layer. A single hidden unit
might be strongly activated by a
horizontal line in the input, or per-
haps a diagonal. The important
thing to note is that the behavior of
these hidden units is automatically
learned, not preprogrammed. In
Figure 15, the input grid appears to
be laid out in two dimensions, but
the fully connected network is una-
ware of this 2-D structure. Because
this structure can be important,
many networks permit their hidden
units to maintain only local connec-
tions to the input layer (e.g., a dif-
ferent 4-by-4 sub-grid for each hid-
den unit).

The hope in attacking problems
like handwritten character recogni-
tion is that the neural network will
not only learn to classify the inputs
it is trained on, but will grrwdizr
and be able to classify inputs that it
has not yet seen. We will return to
generalization in the next section.

It seems reasonable at this point
to express the following: “All neu-
ral Ilets seem to be able to do is clas-

sification. Hard AI problems like
planning, natural language pars-
ing, and theorem proving are not
simply classification tasks, so how
do connectionist models address
these problems?” Most of the prob-
lems we kvill see in this article are
indeed classification problems, be-
cause these are the problems that
neural networks are best suited to
handle at present. A major limita-
tion of current network formalisms
is their way of’ dealing with phe-
nomena that involve time. This lim-
itation is lifted to some degree in
work on recurrent networks (e.g.
[14]), but for now, we will concen-
trate on classif’ication problems.

Let LIs now return to back-
propagation networks. The unit in
a backpropagation network re-
quires a slightly clif’f‘erent activation
function from the perceptron. Both
functions are shown in Figure 16. A
backpropagation unit still sums up
its weighted inputs, but unlike the
perceptron, it produces a real value
between 0 and I as output, based
on a sigmoid (or S-shaped) func-
tion. Let SUVI be the weighted sum
of the inputs to a unit. The equa-
tion for the unit’s output is given
by:

1
output =] + p-““”

Like a perceptron, a back-
propagation network typically
starts out with a random set of
weights. The network adjusts its
weights each time it sees an input/
output pair. Each pair requires two
stages: a forward pass and a back-
ward pass. The forward pass in-
volves presenting a sample input to
the network and letting activations
flow until they reach the output
layer. During the backward pass,
the network’s actual output is con-
pared to the target output, and
error estimates are computed for
the output units. The weights con-
nected to the output units can be
adjusted in orcler to reduce those
errors. We can then use the error
estimates of the output units to de-
rive error estimates for the units in

.

the hidden Iayers. Finally, errors
are propagated back to Lhe connec-
Lions stemming f’rom the input
uniLs.

Unlike the perceptron learning
algorithm of’ the last section, the
backpropagation algorithm usually
updates its weights increnienLally,
after seeing each input/output pair.
After it has seen all of‘ the input/
output pairs (and adjusted its
weights that many times), we say
that one c~jm/r has been complcLeci.
‘l‘raining ii backpropagation nct-
work usually requires many epochs.

Kef‘er back LO Figure 14 for the
basic structure on which the follow-
ing algorithm is basccl.

AlgorPthm: BOdrpPOpOgUtiOn

Given: A set of input/output vector
pairs.
CompuLe: A seL of’ weighLs 1Or ;I
three-layer network that maps in-
puts onto corresponding outputs.

1. Let A be the number of units in
the inpuL layer, as determined
by the length of’ the Lraining
input vectors. Let C be the
number of‘ units in the outpill
layer. Now choose B, the num-
ber of’ units in the hidden
layer.” As shown in Figure 14,
the inpuL and hidden layers
each have an exLra unit used
for thrcsholding; theretore,
die units in these layers will
sometimes be indexed by the
ranges (0 . A) and (0 . B).
We denote Lhe ;dvation levels
of‘ the units in the input layers
by .r,, in the hidden layer by h,,
and in the outpuL layer by 0,.
Weights connecting the input
layer to the hidden layer are
denoted by 70 I,,, where sub-
script i indexes Lhe input units.
andj indexes the hidden units.
Iikcwise, weights connecLing

‘(~rxlicnt &swnt is 111~ smw thin!: as h//l
d/dur,g. ~~~dulo 2 cll;ulgc ill sipI. Ilill climb
il1.q is 01w 01’ tile wcwk r~~dhod~ 0ltc11 used ill
aylx,lic Al.

~__

ij

input
units

FIGURE 14. A multilayer network. In this diagram 4 /r,, and olrepresent unit actiuatlon
levels of input, hidden, anu output units. Weights on connections between the input and hidden
layers are denoted here by w llJ, while weights on connections between the hidden aMl output
layers are denoted by IY 211.

.

0123456789
t t t t t t. t t t t

0000000.00

FIGURE 15. using a multilayer network to learn to ciasslfv hanllwrltten diglts. The hidden
units learn to recognize important features in the input.

FDGURE 16. The stepwise activation function of the perceptron (left), and the sigmoid
activation function of the backpropagation unit (right). The sigmolfl function is continuous and
differentiable, features requirerl by the backpropagation algorithm.

67

2.

the hidden layer to the output
layer are denoted by u12,, with i
indexing to hidden units and ,j
indexing output Imits.
Initialize the lvcights in the net-
work. Each weight should be
set randomly to Ilumber be-
tween - 0. I and 0.1.

7uL, = J~utrtlottr(-0. 1 ,O. 1)
for all i = 0 ,i,j = 1 . . H

7~2,~ = mdottl(-O. 1 ,o. 1)
for all i = 0 . . . 17, j = I C

3.

4.

5.

(5.

5.

Initialize the activations of the
thresholding units. These
should never change their val-
ues.

X,) = 1 .o

h,, = 1 .o

Choose an inpulioutput pair.
Suppose the illput vector is x,
and the target output vector is
Y,. Assign activation levels to the
input uiiits.
Propagate the .aclivations from
the units in the input layer to
the units in the hidden layer,
using the activation fmiction of
Figure 1 ci:

h, =
I

-T- 1 + (,r-, II it I’,\’

for all j = 1 . B

Note that i ranlges from 0 to A.
zo l,,, is the threshotding weight
for hidden unit j (its propensity
to tire irrespective of its in-

puts). .Yo is 2ltWilyS 1.0.
t’ropagdte the ;activations from
the units in the hidden layer to
the miits in tlhe output layer.

1
,I I = -7- 1 + (,--,. II W?,~II,

for all j = 1 C

Again, the thrcsholding weight
zo2,,, for output unit j plays a
rote in the weighted s~mma-

lion. /I,, is always 1 .O.

Compute the errors of the

units in the output layer, de-
noted 62,. Errors are based on
the network’s actual output (0,)
and the target output (s,).

62, = o,(1 - o,)o’, - 0,)

for all ,j = I C

8. Compute the errors of the
units in the hidden layer, de-
noted 6 1,.

(.’

61, = h,(t - ti,)c 62, . ?u2,,
,= I

fi)r a11 j = I . B

9. Adjust the weights between the
hidden layer and output layer.”
‘l‘he learning rate is denoted q;
its function is the same as in per-
ceptron learning. A reasonable
value of’ 77 is 0.35.

&02,, = 77 . 62, . h,
for all i = 0 H, j = 1 . C

10. Acljust the weights between the
input layer and the hidden
layer.

AU I,, = 17 . 6 1, . X,
fiJr all i = 0 . A,j = 1 R

II Go to step 4 and repeat. When
all of’ the input/output pairs
have been presented to the net-
work, one epoch has been com-
pleted. Kepeat steps 4 to 10 foi
as marly epochs as desired.

The algorithm generalizes

straightforwardly to networks of
more than three layers.” For each
extra hidden layer, insert a forward
propagation step between steps 6
and 5; an error computation step
between steps 8 and 9; and a weight
achustmellt step between steps 10
and 1 I. Error computation for hid-
den units should use the equation
in step 8, but with i ranging over
the units in the next layer, not nec-
essarily the output layer.

The speed of learning can be in-
creased by modifying the weight
modification steps 9 and IO to in-
clude a momentum term (Y. The
weight update formulas become:

&‘2,,(1 + 1) = 77 . 62, h, + (~A7~2,,(1)

A-cul,,(t + 1) = 77 . 81, x, + aA701,,(1)

where tr,, x,. 61, and 62, are mea-
sured at time t + 1. Azu,,(t) is the
change the weight saw during the
previous f‘or\\,al.d-back\l,arcl pass. If
a is set to 0.9 or so, learning speed
is iniproved.i

Recall that the activation flmc-

tion has a sigmoid shape. Since infi-
nite lveights would be required foi
the actual outputs of the network to
reach 0.0 and 1 .O. binary target
outputs (the J,‘S of‘steps 4 and i) are
usually given as 0.1 and 0.9 instead.
The sigmoid is required by back-
propagation because the derivation
of the weight update rule requires
that the activation function be both
continuous and dif’f’erentiable.

The derivation of the weight
update rule is more complex than
the derivation of the fixed-incre-
ment update rule for perceptrons.
but the idea is much the same.
‘l‘herc is an error function that de-
fines a surf’ace over weight space,
and the weights are modified in the
direction of’ the gradient of the sur-
face. See [2%27] for details. Inter-
estingly, the error surface fhr mu-
titayer nets is more complex than

66

.

the error surface for perceptrons.

One notable difference is the exis-

tence of‘ local minima. Kecall the

bowl-shaped space we used to ex-

plain perceptron learning (Figure

IO). As we modified weights, we

n~ovcd in the direction of’ the bot-

tom of the bowl; eventually, we

reached it. A backpropagation net-

work, however, may slide down the

error surface into a set of weights

that cloes not solve the problem it is

being trained on. If that set of

weights is at a local minimum, the

network will never reach the opti-

mal set of weights. T‘hus, we have

I10 analogLIe of the Perceptron

Convergence TheoreIn for back-

propagation networks.

There arc several methods of

combating the problem of’ local

minima. ‘l‘he momentum factor (Y,

which teIIds to keep the weight

changes moving in the saIiie direc-

tion, allows the algorithm to skip

over small minima. Siinulated an-

nealing, to be discussed later, is also

Lrsefr~l. Finally, adjusting the shape

of a Linit’s act&ion function can

have an effect on the network’s SLIS-

ceptibility to local minima.

Fortunately, backpropagation

networks rarely slip into local min-

ima. It turns out that, especially in

larger networks, the high-dimen-

sional weight space provicles plenty

of degrees of freedom f’or the algo-

rithm. The lack of a convergence

theorem is not a problenI in prac-

tice. However, this pleasant feature

of’ backpropagation was not discov-

ered until recently, when digital

compLIters became fast enough to

support large-scale simulations of

neural networks. The back-

propagation algorithm was actually

clerivecl independently by a nuin-

ber of’ researchers in the past, but it

was cliscardcd as many times be-

cause of the potential problems

with local Ininima. In the days be-

fiIre fast digital computers, re-

searchers coulcl only judge theiI

idea by proving theorems about

the111, and they had no idea that

local minima would tLIrn oLIt to be

rare in practice. l‘hc modern forni

of’ backpropagation is of’tcn cred-

t
training
set

s

1 A2

Training Time *

FIGURE q 7. A common generalization effect in neural network learning.

.

ited to [16, 22, 25, 3 11.

Backpropagation networks are

not without real problems, how-

ever-the most serious being the

slow speed of learning. Even simple

tasks require extensive training

periods. The XOR problem, for

example, involves only five units

a~nd nine weights, but it can reqLLire

many passes through the foLLI

training cases before the weights

converge, especially if’ the learning

paralneters are not carefully tuned.

Also, simple backpropagation does

not scale LIP very well. ‘The number

of‘ training examples required is

superlinear in the size of the net-

\vork.

Since backpropagation is inher-

ently a parallel, distributed algo-

rithm, the idea of improving speed

by bLIilding special-purpose back-

propagation hardware is attractive.

However, f’ast new variations of

backpropagation and other learn-

ing algorithms appear frequently in

the literature, e.g., [7]. Uy the tiIne

a11 algorithm is transformed into

hardware ancl embedded in a com-

puter system, the algorithm is likely

to be obsolete.

Generalkatlon
If all possible inputs and outputs

are shown to a backpropagation

network. it will (probably, eventu-

ally) find a set of weights that maps

the inpLIts onto the oLitpLIts. Foi

many Al problems, however, it is

impossible to give all possible in-

puts. Consider face recognition ancl

character recognition. -l-here are an

infinite nLImber oforicntations and

expressions to a face, and an infi-

nite number of fonts and sizes for a

character, yet hLLmans learn to clas-

sify these objects easily from only a

few examples. We woulcl hope that

oLIr networks woulcl do the sanle.

And in fact, backpropagation shows

promise as a generalization mecha-

nism. If‘we work in a donwin where

similar inputs get mapped onto

similar outputs, backpropagation

will interpolate when given inpLIts it

has never seen befijre.

There are some pitfalls, how-

ever. Figure I7 shows the common

generalization effect during a long

training period. During the first

part of the training, performance

on the training set improves as the

network adjusts its weight through

backpropagation. Performance on

the test set (examples that the net-

work is W/ allowed to learn on) also

improves, although it is never qLIite

as good as the training set. Af‘ter a

while, network performance

reaches a plateau as the weights

shift around, looking for a path to

frirther improvement. Ultimately,

SLICK a path is fi)und, and perfor-

mance on the training set improves

again. BLit performance on the test

set @.c WKW. Why? The network

has begLIn to memorize the inclivid-

ual inpLIt/oLItpLIt pairs rather than

settling for weights that generally

describe the mapping f’or aII casts.

With thousands of’ real-valued

weights at its disposal, back-

69

.

propagation is theoretically capable
of storing entire training sets; with
enough hidden units, the algorithm
could learn to assign a hidden unit
to every clistinct input pattern in
the training set. It is a testament to
the power of backpropagation that
this actually happens in practice.

Of course it is undesirable for
backpropagation to have that much
power. ‘There are several ways to
prevent it from resorting to a table-
lookup scheme. One way is to stop
training when a plateau has been
reached, on the assumption that
any other improvement will come
through cheating. Another way is
to add deliberately small amounts
of noise to the training inputs. The
noise sl~o~~lcl be enough to prevent
memorization, but it should not be
great enough to confuse the classi-
fier. A third way to help generaliza-
tion is to reduce the number of hid-
den units in the network, creating a
bottleneck between the input and
output layers. Confronted with a
bottleneck, the network will be
forced to come up with compact
internal representations of its in-
puts.

Finally, there is the issue of ex-
ceptions. In many domains, there
arc general rules, but also excep-
tions to the rules. For example, we
can generally make the past tense
of’ an Ettglish verb I:ry adding “-ed”
to it, but this is not tt ue of verbs like
“sing, ” “think,” and “eat.” When we
show a network many present/past
tense pairs, we would like it to gen-
eralize in spite of the exceptions-
but not to generalize so far that the
exceptions are lost. Backpropaga-
tion perf’orms f’airly well in this re-
gard, as do simple perccptrons, as
reported in [Xl.

EOltZmt#t#t# Machiries

A Boltzmann machine is a variation
on the idea of a Hopfield network.
Recall that pail-s of’ 1units in a Hop-
f‘ield net are connected by symmet-
ric weights. Units update theit
states asynchronouslly hy looking at
then local connect.ions to other.
units.

In aclclition to serT;ing as content-

addressable memories, Hopfield
networks can solve a wide variety of
constraint satisfaction problems.
Each unit can be viewed as a hy-
pothesis. Mutually supporting hy-
potheses are connected with posi-
tive weights, and incompatible
hypotheses are connected with neg-
ative weights.

A major limitation of Hopfield
networks is that they settle into local
minima. In constraint satisfaction
tasks we need to find the globally
optimal state of the network. This
state corresponds to an interpreta-
tion that satisfies as many interact-
ing constraints as possible. Unfor-
tunately, Hopfield networks cannot
find global solutions because they
settle into stable states via a com-
pletely distributed algorithm. If a
network reaches a stable state like
state A in Figure 4, that means no
single unit is willing to change its
state in order to move uphill; thus
the network will never reach glo-
bally optimal state B. If several
units decided to change state simul-
taneously, the network might be
able to scale the hill and slip into
state B. We need a way to push net-
works into globally optimal states
rvhile maintainittg OLII- distributed
approach.

Boltzmann machines solve this
problem by employing a search
techttique called si,,~tc/atrd CI?/~PC~/~‘IIR
[151. Space limitations preclude a
full discussion of l~oltzn~ann ma-
chines; for details, see [1 I]. Briefly,
units in a Boltzmann machine up-
date their individual binary states
using stochastic rather than deter-
ministic rules. At first, units switch
on and off randomly, but as the
network “cools down,” they ap-
proximate a Hopfield network. If
the cooling procedure is slow
enough. a Boltzmann machine is
guaranteed to avoid local minima.
As in backpropagation networks,
the weights of’ a l~oltzmann ma-
chine are usually acquircd via a
learning algorithm.

Unsupervised Learning
Some networks, e.g. [3], do not re-
ceive target output values from a

teacher, but instead only receive a
real-valued signal indicating pun-
ishment or reward. ‘l‘hese networks
ad.just their behavior to avoid f’u-
ture punishment.

What if a neural network is given
rto f’eedback for its outputs, not
even a reinforcement signal? Can
the network learn anything useful?
The unintuitive answer is: yes. This
form of learning is called UXSU;DC~-
~1’s~~ IP~I~III’~ because no teacher is
required. Given a set of input data,
the network is allowed to play with
it to try to discover regularities and
relationships between the dif‘ferent
parts of the input.

Learning is often made possible
through some notion of which fea-
tures in the input set are important.
But often we do not know in ad-
vance which features are impor-
tant, and asking a learning system
to deal with raw input data can be
computationally expensive. Unsu-
pervised learning can be used as a
“ftature discovery” module that
precedes supervised learning.

Consicler the data in Figure IX.
The group of’ 10 animals, each de-
scribed by its own set of features,
breaks down naturally into three
groups: mammals, reptiles, and
birds. We wo~~ld like to build a nct-
work that can l~arrc which group a
particular animal belongs to, and to
generalize so that it can identify
animals it has not yet seen. We can
easily accomplish this with a six-
input, three-output backpr-opaga-
tion network. We simply present
the network with an input, observe
its output, and update its weights
based on the errors it makes. Since
without a teacher, however, the
error cannot be computed, we must
seek other methods.

0~11. first problem is to ensure
that only O)LP of the three output
units becomes active f’or any given
input. One solution to this problem
is to let the network settle, find the
output unit with the highest level of
activation, set that unit to 1, and set
all other output units to 0. In otliet
rvords, the output unit with the
highest activation is the only one we
consider to be active. A more

10 Nwcmber 199O/Vd33. No.ll/COMMUWICATIOWSOFT”E ACM

.

neural-like solution is to have the
output units fight among them-
selves for control of an input vec-
tor. The scheme is shown in Figure
I!). The input units are directly
connected to the output units, as in
the perceptron, but the output
units are also connected to each
other, via prewired negative, or
inhibitory, connections. The output
unit with the most activation along
its input lines initially will most
strongly dampen its competitors.
As a result, the competitors will
become weaker, losing their power
of’ inhibition over the stronger out-
put unit. The stronger unit then
becomes even stronger, and its in-
hibiting effect on the other output
units becomes overwhelming. Soon
the other output units are all com-

pletely inactive. This type of mutual
inhibition is called ~ui~~t~r-tuk~-~~ll
behavior. One popular unsuper-
vised learning scheme based on this
behavior is known as con+titive
lru)‘t1 ill&

In competitive learning, output
units fight for control over portions
of’ the input space. A simple com-
petitive learning algorithm is the
ftillowing:

1. Present an input vector.
2. Calculate the initial activation

for each output unit.
3. Let the output units tight until

only one is active.
4. Increase the weights on connec-

tions between the active output
unit and ~LC&W input units. This
makes it more likely that the out-
put unit will be active next time
the pattern is repeated.

A problem with this algorithm is
that one output unit may learn to
be active all the time-it may claim

all of’ the space of inputs fi)r itself:
For example, if’ all the weights on a
unit’s input lines are large. it will
tencl to bully the other output units
into submission. Learning will only

f’urther increase those weights.
I‘he solution. originally due to

Kosenblatt (and described in [27]),
is to ration the weights. The SL~I of
the weights on a unit’s input lines is
limited to 1. Increasing the weight

Dog 1 0 0
Cat 1 0 0
Bat 1 0 0
Whale 1 0 0
Canary 0 0 1
Robin 0 0 1
Ostrich 0 0 1
Snake 0 1 0
Lizard 0 1 0
Alligator 0 1 0

FIGURE 18. Data for unsupervised learning.

.

has-hair? has-feathers? lives in water?
has-scales? flies? lays eggs?

FBCURE 18. A competitive learning network. Input units are connected directly to output
Units. Through the use of inhibitory connections, output units fight for control of input.

.

of’ one connection requires that we cording to some natural division of
decrease the weight of’ some other the inputs.
connection. Here is the learning
algorithm: 1. Present ai input vector, denoted

Algorithm: Competitive
Learning

(liven: A network consisting of’)I bi-
nary-valued inpLlt units directly
connected to any number of output
units.
I'IW~WC: A set of’ weights such that
the output unit become active ac-

(I,, x1’ x,,).

2. (Xculatc the initial activation
fill- each 0LitpLit Linit by comput-

in< ;I weighted SLIIII of‘ its in-
pLlts.S

3. Let the output units fight until
only oiic is active.!’

4. Adjust the weights on the input

COMMUNICATIONS OFT”E ACM/Noverr~bcr 1990/“01.33, No.11 71

.

lines that lead to the single active
output unit:

XI

fill- all j = 1 ,I

where 70, is the weight on the
connection f’ronl input unit i to
the active output unit, x, is the
value ot‘thejth i.oput bit, 1~1 is the
number of input units thd are
active in the input vector that
was chosen in step (I), and 77 is
the learliing rate (some small
constant). It can be shown that if’
the weights on the connections
tecding ilito an output unit total
1 More the weight change, they
will still total I ;if’ter~\~ards.

3. Kepeat steps l-4 for all input
patterns, fiw nmiy epochs.

.I‘he weight update rule in step 4
makes the output unit 111orc prone
to fire when it sees the same input
again. If’ tlie same input is pre-
sented over and over, the output
unlit bzill eveiitwdllp adjust its
\veights fbr maxini~rn~ activation on
that input. Bccaure input vectors
arrive in ;I mixed f>dlion, however,
output units never settle on a per-
fect set of‘ weiqlits. I‘lie hope is that
each will find ;I iiatl~ral group of‘
input vectoi-s and gravitate toward
it, that is, to~vartl high activations
when presentecl \vith those inputs.
‘I’he algorithlii halts when the
\veiglit ch;uigcs becoinc very small.

it a high level of activation when
presented with an input f’rom dhet
cluster. In other words, it may oscil-
late between the two clusters. Nor-
mally, another output unit will win
occ;isionally, and move to claim one
01‘ the two clusters. However, if the
other output units are conipletcly
unexcitable by the input vectors,
they may never win the competi-
tion. One solution, called /fwk~
I~crvtti~r,q, is to change the weights
belonging to relatively inactive ou-
put units as well as the most active
one. The weight update rule f’ol.
losing output units is the same as in
the al~qorithm :tbove, except that
they move their weights with a
much sm;dler q (learning rate). An
alternative solution is to acljust the
sensitivit\ of‘ ;I11 output unit
through the use of ;I bias, or acljust-
;ible tlircaliolcl. Red that this bias
mechanism \C>IS used in pei--
ccptrons, and coi~iwponclet1 to the
pl-opensity of a unit to tire irrespec-
tive of’ its Inputs. Output units that
scltlo~i~ win in the competitive
learning process can be given largei
biases. In cff’cct, they are given coii-
trol over ;I larger portion of‘ the
input space. III this bray, units that
cotisistently lose are eventualI)
given a chance to win and acljust
their weights iii the dircction of‘ a
particular cluster.

‘I‘hc conipetitive learning algo-
rithtn works ~vell in many cases, but
it has seine pwblenls. Sometimes,
one outprit unit uill al\vays win,
despite the existence of more than
one clustei- of input vectors. If’ two
clusters are close together. one out-
put unit inay lear~i ~weights that give

Applications 06 Neural

Networks

‘I‘he study of‘ neuul networks has
yielded a number of‘ techniques
that have been used to approach
difficult problems with sonic sue-
cess. For example, Figure 20 shows
llO\\ a I,;lckl”.op;iS;iti’,n network
call he trained to discriminate
anioiig tliff’crent vowel sounds.
given a pair of f’requencics taken
l‘rom ;I speech wavef’ornl. A good
deal of’ connectionist research is
;ilso tlircc-ted toward the l~rol~leni of‘
machine vision. Neural netl+wrks
provide ;I f’r;~mc\vork fi)r iutegrat-
ilig the llulllel‘ous constraint
sources ~iecessiii-Y fill- vision, in a
Iiighly parallel f’&liion [‘L]. Coniiec-
tioiiist systeiiis liavc been appliecl in
LI~:III~ other arcas, including speech

*l‘here is no reason to pass the weighted sum
through a sigmoid function, as we did with
backpropagation. because WC only calculate
activation levels for the pux-pose of singling
out the most highly activated output unit.

“As mentioned earlier, any method for deter-
mining the most highly acrivated output unit
is sufficient. Simulators writwn in a serial pro-
gramming language may dispense with the
neural circuitry and simply compare activa-
tions levels to find the maximum.

generation [28]. combinatorial
problems [131, game playing [29],
signal processing [IO], image com-
pression [5], and IWKI f’ollowing
[23].

Since all of these systems rel)
heavily on automatic learning, we
can think of’ them as exercises in
“extensional programming” [5].
.I‘here exists some complex rela-
tionship between input and output,
and we proqgram that relationship
into the coinputer by shobing its
examples from the real world. Con-
trast this with traditional. “in-
tensional progranimiiig,” in which
we write rules or specializecl algo-
rithms tvithout reference to any
particular exaniples. In the fornie;~
case, \ve hope that the network gen-
cralizcs to liandle new cases cm-
rectly; iii the latter case, we hope
t ha1 1 he algorithm is general
enough to handle whatever cases it
rccci\zes. E:xtensional l~rogrminiing
is a powcrfiil technique because it
clrastic;tlly cuts clown on knowledge
acquisition tune, C ‘I m:qor bortlcneck
in the construction of‘ AI systems.
Ho\vever, currelIt learning meth-
ods arc not adequate for the extcii-
sional pro~grminiing of very coni-
plex tasks, such as the translation of‘
English sentences into ,Japanese.

Connectionlst AI and

Symbolic AI

I‘hc conucctionist appro;d~ to Al is
quite dif’fcreiit from the traclitional
synil~olic approach. 130th ap-
pi-odies are~joined at the piddeni.
21s both try to address tlif‘f’icult is-
sues in search, knowledge repre-
sentation, and learning. I.et us list
some of the methods they employ:

Connectionist
l Se~~i~cl~-I’;~~;~llcl I-claxation.
l Kno\vletlge Kcpl-csentation-

L;qc numl,e~ of’ lml-Yaltled
cotiiicctioii stlX3lgths (Struc-
turcs of’tcn storecl iis tlistrib-
utetl patterns of activation).

l I.e;ll~llillg-lSackl~~.ol~~~~]tioll,
130ltmi;inii iiiachincs, reiii-
f’orcemeiit learning. unsupcr-
\isctl le;trning.

Symbolic

72

.

SI l’ellgc IIS ;111d weaknesses. One
miioi. ;illure of‘ connectionist sys-
tcnls is that they employ knowledge
I.el)i,cs”il;ltioris that see111 to be
tnor(: /~utw~Idf~ than rhcir symbolic
counwrprts. Nearly AI COIIIIC’C-
tionist systems have ii strong leaim
inx compollt’nt. Howcvcr, neu~d
lletwork Icarning algorithms LISU-
ally involve ;I hrge nunibcr of train-
iiig cx~umples and long training
pcriotls. compaid to their spi-

frolic cousins. Also, af’tcr ;I network
has Icarnctl to perfimii ;I tlif‘f’icdt
task, its knowledge is usually quite
opqw--;iii ilnpciict~at~le inass of‘
comcctioil weights. (ktriiig the
t1clwol.k to explain its reasoning,
then, is tlif’ficult. Of‘ COLII‘S~, this
111ay 1101 IX ;I htl thing. Humans,
till- cxan~ple. appear to have lit&
access to the procedures they 11x2

Liar IIMII~ tasks like speech I-ccogni-
tion and vision. Ir is no accident
that the most proiiiisiiig uses foi
II~LIKI~ Ilctworks arc in these areas

of’ lo\v-level perception.
It is tlif‘f‘icult lo see how conncc-

tionist systems will tackle dil‘f’icult
pmtkm that symbolic, Sl;lte-space
search aclcliwses (e.g., clicss, the-
ol~em-~~~~o\~ing, alid pl;lll~lili~). Pat--
dlel rchx;ilion seal-ch, howevei~,
does have wine advantages wei
symbolic search. First ot’~iII, it maps
naturally onto highly parallel hard-
ware. When such hardwa~~e be-
coiiic’s widely avaihtdc, parallel re-
laxation methods will he extremely
efficient. 1CLoi.e iniportantly, paral-
Icl relaxation search may prove
very cft’icient because it cm make
llSC of’states that tla\Y 110 ;lll;llogLKs

in symbolic search. If‘ we f‘reczc 21
network while it is still settling, we
may not he able to make sense out
of’ the pattern of activity, but evcn-
tdy, ;I consistent solution state
fillls out of the relax;ition process.
In coiilrast, a symbolic system can

OUTPUT
(One for Each of Ten Vowels)

HOD WHO’D HAD HEED

Fl F2

INPUT
(First and Second Fonnants)

DECISION REGIONS

0 500 loo0 1400

Fl (Hz)

FIGURE 20. A network that learns to distinguish Vowel sounds (adapted from 1171).

.

wily expand new seaid~ nodes that
c01~esp011cl to valid, possible states
ol‘ the \\Y~rltl.

A good tlwl of’ connectionist re-
search coiiceri~s itself with nioclcl-
ing hunmn mental p~wesses. NCII-
1-d nct\vorks seen1 to display many
psychologically aincl biologically
plausible f’calllres such iis content-
aclclress;ildc nieniol-y, friult toler-
ance, clistrihud ~el)~“sent~~tioiis,
arilomatic geileralization. <:an we
integrate these tlcsirable properties
illto symbolic AI systems? Cer-
tainly, highlevel theories of‘ cogni-
tion can incorporate such features
as new psychological primitives.
Practically speaking, we may want
to use conncctionist architectures
for low-lcvcl tasks such as vision,
speech recognition, and memory,

f&cling results f’rom these niotlulcs
into svml)olic Al progran~s. An-
other idea is to take ;I symbolic no-
tion. :uicl inipleinent it in a connec-
tionist fl.ainewol-k. A connectiollist
prodidon system is clcscrilml in
[:-5O] and ;I coiineclionist semantic
network is described in [G]. Ulti-
mately, connectiollists would like to
see symbolic structures emerge nat-
urally fiwm c01i1plex interactions
;iiiiong simple units, in the s;in~e
way that wetness emerges f’roni the
conibiii;itioii of‘ hydrogen and oxy-
gen, although it is an intrinsic prop-
cay of neither.

Most of‘ the piwniising atlvan-
tagcs of colincctionist systems tle-
scribed in this article are ,just that:
proinising. A great clcal of’ work
reni;tins to be done LO turn these

COMMUNlCATlOWS OFTHE ACM/Nuven,bcr 199O/Vol.33, Nu.11 73

.

promises into resttl1.s. Only time will

tell how influential connectionist
niodels will be in the evolution of

AI research. In arty case, connec-
tionists can a(least point to the
brain’s existence as proof that neu-

ral networks, in some fhrm, are c;t-
pable of exhibiting intelligent be-

havior.

Acknowledgments.
I WOLII~ like to thank Yolanda Gil,
Dave -l‘ottretzky, and Marco Zagha
f‘or their useful conttnents and sug-
gestions. 0

References
1. Ashby. W. K. n,w+r,c 101. 0 H,-/Ii,/.

Wiley. New York. 1’~?52.
2. Ball;trd. D. H. Patanleter nets. Ar/,f.

ftrlrll. 22. 3 (1984). :!35-267.
3. Barto. A. G. Learning by statistical

coot)et.ittiott 01 self-interested
ttcut-on-like computing elements.
FI,I,MH ‘~t‘rtro6iolo,!q 4. 4 (1985).
Block, H. I). .Illc perceptron: A
model f’or brain functioning. KP7’.
Mod. I’lty 34. 1 (1962). 123-135.
Cottrcll, (;. W.. Mutlro P.. and Zip-
ser D. Learning internal represen-
tations from gray-scale images: An
example 01‘ cxteiisional program-
ming. In Pw,ccrtr’itq:.i t,f /l/r dvirrtk
A~rurrnl C012/>wm~ (If t/w Coguitkw
Scicwfc~ soricq (1987). pp. 46 l-473.
Derthick. M. ILII(&I~IP Xrctswit!g 6~
/‘III-rrllrl Corralr-airit Strli.7Jbctio~r. 1’h.D
dissertation. Carnegie Mellon Uni-
versity. Pittsburgtt. PA., 19X8.

Fahlman, S. E. Faster-learning vat-i-
ations on l,;tck-l”“‘pagation: An
empirical study. In Prowrdi~r,q:c oft/w
1988 Cotr,rrrtio,ri.\.l ModPl~ S/trlrrlrr~
SC/&. Morgan Kaul’ntann Publish-
ers, San Matro, Calif. I988. pp. 38-
51.

8. Fahhnatt. S. E. and Hinton, G. E.
(:onnectionist arcltitectures for arti-
ficial intelligence. IEEE Comjht. 20,
1 (1987). 100-109.
Feldman. J. A. and Ballard. D. H.
Connectionist models and their
properties. C;oglr. Sci. 6. 3 (1985).
203-254.

9.

10.

11.

Gorman. K. and Stjnowski. .I‘. J.
Analysis of‘ hidden units in a iay-
ered network to classify sonar tar-
gets. iVrrtrcl/ N~tw0rlt.s 1. 1 (1988).
7549.

Hinton. G. E. and Sqjnowski, ‘r. J.
1986. Learning and relearning m
Boltzmann Machines. In Ptrwllr/

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Di~ttihrctd f’tofwit~,y, I). E. Rumel-
hart, J. I.. McClelland. and the PDP
Keseat-ch (;I-oup Eds., Ml’r Press.
<;iutibt~idgc. Mass.. pp. 282-Y 17.
t Iopficld. J. J. Neural ncttvorks and
pliysical systems with entergettt col-
Ice-tiw cotnptttation;tI abilities. Itt
I’,m-wt/iq\ o/ t/w Nrrtio~ct/ Arctti/r vq of
Sciwc69 L’SA 79. 8 (1982), pp. 2554-
25%.
Hopl’ield, J. J. and .l‘ank. 1). W.
‘Neural’ computation of decisions in
optimization problems. Bid. C+r-fr.

52, 3 (19X5), 141-152.
Jordan. M. I. Supervised learning
;mtl qstenis with excess degrees of
freedom. ln I’roccrdit~g~~ of l/w 1988

Co,c,rrctio,ri.tt ~\lorld~ S~c~~rmcv School.

Rforgan Kaul‘matm Publishers. San
Riatco, Calif.. 1988. pp. 62-75.
Kirkpatrick, S., (ielatt, Jr., C. D..
and Vccchi. M. 1’. Optimization by
simulated annealing. Scicwr 220,

450x (I983).
LeCun. Y. Une procedure d’ap-
prelltissagc pour reseau a seauil as-
symetrique (a learning procedure
so1 asvmmetric threshold net-
lvorks). 1 n I’roc&i,r~.~ ~4 Cogrritkw
85. (Paris, I%%?), pp. 599-604.
Lippmann, R. P. Rcvicw of research
on neural nets f;)r speech. Nrlcw[
CotqNt. I, I (1989).
RIcCulloch, \V. S. and Pitts, W. A
logical calculus of’ the ideas im-
txmcnt in neural nets. Rltllr?i?r qf

,Lltdr. fhp/f~. 5 (1943). 115-137.

Rlinsky, M. h’rtrrcrl N&s crrrd t/w
Urclrw&1otlrl PI-oD~~~,T,. Ph.D disserta-
tion. Princeton Lrni\ersity, Prince-
ton, SCFV Jcrscy, 1954.
hlinsky, M. and Papert. S. I’P~--
wptrott.\. MIT Press, Cambridge,
hlass 1969. Expanded also pub-
lished in edition, M1.r Press. 1988.

Minsky. M. and Self’ridge, 0. G.
Learning in neural nets. In Pwrwd-
l,lgs 41 the Fmrrth LoAm Synpositc~~r
o,, ftfwttrcrtio,r -f/wot~s (August 29 to
September 2, London). Academic
Press, New York 196 1.

Parker. D. B. Lerrmi,zg Logic. ‘lech.

Rep. ‘1‘K-47, MIT Center for Com-
putational Kesearch in Economics
and Management Science. 1985.
Ponterleau. D. ALVINN: An auton-
omous land vehicle in a neural net-
work. In Adr~rr~c~ it) Nrrrrctl I~rfii~mrc~-
tioir Pmssitrg Swkm I, D.
TouretLky, Ed. Morgan Kaufmann,
Smn Mateo. Calif.. pp. 305-313.
Roscnblatt. F. I’riwiplrs oJ

Nrrr~otl~,lclll/ics: Pl’rrrptrotl~ cctrd tllr

25.

26.

27.

28.

29.

30.

31.

T/wot~~ C$ Rrcrirr iMrc/~rrtrisw~. Spartan
Books, Washington, D.C. 1962.

Rumelhart. D. E.. Hinton, G. E. and
Williams. R. J. Learning internal
rept-esentations by error propaga-
tion. In Pnwlld l~istribrrtrtl Pwms-

itrg, 1). E. Rumclhart. J. L. McClel-
land, and the PDP Research Group
Eds. M1.T Press, Cambridge, Mass.,
pp. 3 18-362.
Kumelhart. D. E. and McClelland,
J. L. 1986. One learning the past
tenses of English verbs. In Parc~llt~l
I>istribrrtpd Pwrrssi,rg, D. E. Rumel-
hart,.]. L. McClelland. and the PDP
Research Group Eds. MIT Press,
Cambridge. Mass. pp. 2 16-27 1.
Runtelhart, 1). E. and Zipser, D.
Feature discovery by competitive
learning. In I’CIJ-u//r/ Disfribttlrd Pro-
cruiug, D. E. Rumelhart. J. L. Mc-
Clelland. and the PDP Research
Group Eds. M1.r Press, Cambridge,
Mass.. pp. 151-193.
Sejnowski, or. J. and Rosenberg.
C. R. Parallel networks that learn to
pronounce English text. Cwr/plrx
Swtotrs I. 1 (1987). 143-168.
resauro, G. and Sejnowski. T. J. A
pawlIe network that learns to play
backgammon. Artrf: Irrtd/. 3Y,
(1989).
Touretzky. D. and Hintott, G. E. A
distributed connectionist produc-
tion system. Cog. Sci. 12. 3 (1988).
42:1-46ti.
Wet-bos, P. J. Brqo,rrl Rqyrssim: New
Tools lor Prediction and Analysis in
the Behaviot-al Sciences. Ph.D. dis-
sertation, Harvard University,
C:ambridge. Mass., 1974.

CR Categories and Subject Descript-
ors: A.1 [General Literature]: Intro-
ductory and Survey; 1.2.0 [Artificial
Intelligence]: General

General Terms: Algorithms
Additional Key Words and Phrases:

B;tckl’rop;tgatioll, Boltzmann tnachines,
connectiorlism. Hopfield networks,
learning. neural networks, perceptrons.

About the Author:
KEVIN KNIGHT is a Ph.D. candidate
in computer science at Carnegie Mellon
University. He is also a regular consult-
ant to the Artificial Intelligence Labora-
tory at MCC in Austin, Texas. His re-
seat-& interests include natural
Ianguage processing, unification, and
neural networks.

Author’s Present Address: School of
Computer Science, Carnegie Mellon
University. Pittsburgh. PA 152 13.

74 November 199oivd33, No II/COYDIUNIWTIONSOFTHEICY

