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CONNECTIONIST 
In our quest to build intelligent 
machines, we have but one naturally 
occurring model: the human brain. 
It follows that one natural idea for 
artificial intelligence (AI) is to 
simulate the functioning of the 
brain directly on a computer. In- 
deed, the idea of building an in- 
telligent machine out of artificial 
neurons has been around for quite 
some time. Some early results 
on brain-line mechanisms were 
achieved by [18], and other resear- 
chers pursued this notion through 
the next two decades, e.g., [1, 4, 19, 
21,241. Research in neural networks 
came to a virtual halt in the 197Os, 
however, when the networks under 
study were shown to be very weak 
computationally. Recently, there 
has been a resurgence of interest in 
neural networks. There are several 
reasons for this, including the ap- 
pearance of faster digital com- 
puters on which to simulate larger 
networks, interest in building 
massively parallel computers, and 
most importantly, the discovery of 
powerful network learning 
algorithms. 

The new neural network archi- 
tectures have been dubbed connec- 
tion& architectures. For the most 
part, these architectures are not 
meant to duplicate the operation of 
the human brain, but rather receive 
inspiration from known facts about 
how the brain works. They are 
characterized by 

l Large numbers of very simple 
neuron-like processing elements; 

l Large numbers of weighted con- 
nections between the elements- 
the weights on the connections 
encode the knowledge of a 
network; 

l Highly parallel, distributed con- 
trol; and 

l Emphasis on learning internal 
representations automatically. 

Connectionist researchers con- 
jecture that thinking about compu- 
tation in terms of the brain 
metaphor rather than the digital 
computer metaphor will lead to in- 
sights into the nature of intelligent 
behavior. 

Computers are capable of amaz- 
ing feats. They can effortlessly store 
vast quantities of information. 
Their circuits operate in nanosec- 
onds. They can perform extensive 
arithmetic calculations without 
error. Humans cannot approach 

these capabilities. On the other 
hand, humans routinely perform 
simple tasks such as walking, talk- 
ing, and commonsense reasoning. 
Current AI systems cannot do any 
of these things better than humans. 
Why not? Perhaps the structure of 
the brain is somehow suited to these 
tasks, and not suited to tasks like 
high-speed arithmetic calculation. 
Working under constraints sug- 
gested by the brain may make tradi- 
tional computation more difficult, 
but it may lead to solutions to AI 

AND 
problems that would otherwise be 
overlooked. 

What constraints, then, does the 
brain offer us? First of all, indi- 
vidual neurons are extremely slow 
devices when compared to their 
counterparts in digital computers. 
Neurons operate in the millisecond 
range, an eternity to a VLSI de- 
signer. Yet, humans can perform 
extremely complex tasks, like inter- 
preting a visual scene or under- 
standing a sentence, in just a tenth 
of a second. In other words, we do 
in about a hundred steps what cur- 

rent computers cannot do in ten 
million steps. How can this be pos- 
sible? Unlike a conventional com- 
puter, the brain contains a huge 
number of processing elements 
that act in parallel. This suggests 
that in our search for solutions, we 
look for massively parallel algo- 
rithms that require no more than 
100 processing steps [9]. 

Also, neurons are failure-prone 
devices. They are constantly dying 
(you have certainly lost a few since 
you began reading this article), and 
their firing patterns are irregular. 
Components in digital computers, 
on the other hand, must operate 
perfectly. Why? Such components 
store bits of information that are 
available nowhere else in the com- 
puter: the failure of one component 
means a loss of information. Sup- 
pose that we built AI programs that 
were not sensitive to the failure of a 
few components, perhaps by using 
redundancy and distributing infor- 
mation across a wide range of com- 
ponents? This would open the 
possibility of very large-scale im- 
plementations. With current 
technology, it is far easier to build a 
billion-component integrated circuit 
in which 95 percent of the com- 
ponents work correctly than it is to 
build a perfectly functioning mil- 
lion-component machine [S]. 

Another thing people seem to be 
able to do better than computers is 
handle fuzzy situations. We have 
very large memories of visual, au- 
ditory, and problem-solving epi- 
sodes, and one key operation in 
solving new problems is finding 
closest matches to old situations. In- 
exact matching is something brain- 
style models seem to be good at, 
because of the diffuse and fluid way 
in which knowledge is represented. 

The idea behind connectionism, 
then, is that we may see significant 
advances in Al if we approach 
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problems from the point of view of 
brain-style computation rather than 
rule-based symbol manipulation. At 
the end of this article, we will look 
more closely at the relationship be- 
tween connectionist .and symbolic 
AI. 

Hopileld Netwwfks 

The history of AI is curious. The 
first problems attacked by AI re- 
searchers were problems like chess 
and theorem proving, because 
these were thought to require the 
essence of intelligence. Vision and 
language understanding-process- 
es easily mastered by five-year-olds- 
were not thought to be difficult. 
These days, we have expert chess 
programs, and expert medical di- 
agnosls programs, but no programs 
that can match the basic perceptual 
skills of a child. Neural network 
researchers contend that there is a 
basic mismatch beltween standard 
computer information-processing 
technology and the technology 
used by the brain. 

In addition to these perceptual 
tasks, AI is just starting to grapple 
with fundamental problems in 
memory and commonsense reason- 
ing. Computers are notorious for 
their lack of common sense. Many 
people believe that common sense 
derives from our massive store of 
knowledge, and more importantly, 
our ability to access relevant knowl- 
edge quickly, effortlessly, and at the 
right time. 

When we read the description 
“gray, large, mammal,” we auto- 
matically think of elephants and 
their associated featu-res. We access 
our memories by content. In tradi- 
tional implementations, access by 
content involves expensive search- 
ing and matching procedures. Mas- 
sively parallel networks suggest a 
more efficient metlhod. 

A neural networlk, introduced by 
Hopfield [ 121, proposed one theory 
of memory. A Hopfield network 
has the following interesting fea- 
tures: 

l Distributed representation. A mem- 
ory is stored as a pattern of acti- 
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vation across a set of processing 
elements. Furthermore, memo- 
ries can be superimposed upon 
one another-different memo- 
ries are represented by different 
patterns over the .same set of pro- 
cessing elements. 

l Distributed, asynchronous control. 
Each processing element makes 
decisions based only on its own 
local situation. All of these local 
actions add up to a global solu- 
tion. 

l Content-addressable memory. A 
number of patterns can be stored 
in a network. To retrieve a pat- 
tern, we need only specify a por- 
tion of it. The network automati- 
cally finds the closest match. 

l Fault tolerance. If a few of the pro- 
cessing elements misbehave or 
fail completely, the network will 
still function properly. 

How are these features achieved? 
A simple Hopfield net is shown in 
Figure 1. Processing elements, or 
units, are always in one of two states, 
active or inactive. Units are con- 
nected to each other with weighted, 
symmetric connections. A positive 
connection indicates that the two 
units tend to activate each other. A 
negative connection allows an active 
unit to deactivate a neighboring 
unit. 

The network operates as follows. 
A random unit is chosen. If any of 
its neighbors are active, the unit 
computes the sum of the weights on 
the connections to those active 
neighbors. If the sum is positive, 
the unit becomes active, otherwise it 
becomes inactive. Another random 
unit is chosen, and the process re- 
peats until the network reaches a 
stable state (i.e., until no more units 
can change state). This process is 
called parallel relaxation. If the net- 
work starts in the state shown in 
Figure 1, the unit in the lower left 
corner will tend to activate the unit 
above it. This unit, in turn, will at- 
tempt to activate the unit above it, 
but the inhibitory connection from 
the upper-right unit will foil this 
attempt, and so on. 

This network has only four dis- 
tinct stable states. They are shown 
in Figure 2. Given any initial state, 
the network will necessarily settle 
into one of these four contigura- 
tions.’ The network can be thought 
of as storing the patterns in Figure 
2. Hopfield’s major contribution 
was to show that given any set of 
weights and any initial state, his 
parallel relaxation algorithm would 
eventually steer the network into a 
stable state. There can be no diver- 
gence or oscillation. 

The network can be used as a 
content-addressable memory by setting 
the activities of the units to corre- 
spond to a partial pattern. The net- 
work will then settle into the stable 
state that best matches the partial 
pattern. An example is shown in 
Figure 3. 

Parallel relaxation is nothing 
more than search, albeit of a style 
not usually employed in AI. It is 
useful to think of the various states 
of a network as forming a search 
space as in Figure 4. A randomly 
chosen state will ultimately trans- 
form itself into one of the local 
minima namely the nearest stable 
state. This is how we get the con- 
tent-addressable behavior. We also 
get an error-correcting behavior. 
Suppose we read the description, 
“gray, large, fish, eats plankton.” 
We imagine a whale, even though 
we know that a whale is a mammal, 
not a fish. Even if the initial state 
contains inconsistencies, a Hopfield 
network will settle into the solution 
that violates the fewest constraints 
offered by the inputs. Traditional 
match-and-retrieve procedures are 
less forgiving. 

Now, suppose a unit occasionally 
fails, say, by becoming active or in- 
active when it should not. This 
causes no major problem: sur- 
rounding units will quickly set it 
straight again. It would take the 
unlikely concerted effort of many 
errant units to push the network 
into the wrong stable state. In net- 
works of thousands of more highly 
interconnected units, such fault tol- 

The stable state in which all units are inactive 
can onlv he reached ifit is also the initial state. 
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erance is even more apparent- 
units and connections can disap- 
pear completely without adversely 
affecting the overall behavior of the 
network. 

As we can see, parallel networks 
of simple elements can compute 
interesting things. The next impor- 
tant question is: What is the rela- 
tionship between the weights on the 
network’s connections and the local 
minima into which it settles? In 
other words, if the weights encode 
the “knowledge” of a particular 
network, how is that knowledge 
acquired? Knowledge acquisition is 
a difficult problem in AI, and one 
attractive feature of connectionist 
architectures is that their method of 
representation (namely, real-valued 
connection weights) lends itself 
very nicely to automatic learning. 

In the next section, we will look 
closely at learning in several neural 
network models, including per- 
ceptrons, backpropagation net- 
works, and Boltzmann machines. 

Learnlng In Neural 
Networks 

The fierc@ptron, an invention of [24] 
was one of the earliest neural net- 
work models. A perceptron models 
a neuron by taking a weighted sum 
of its inputs and sending an output 
I if the sum is greater than some 
adjustable threshold value (other- 
wise it sends 0). Figure 5 shows the 
device. 

The inputs (xt, x2 x,,) and 
connection weights (rut, wZ w,,) 
in the figure are typically real val- 
ues, both positive and negative. If 
the presence of some feature x, 
tends to cause the perceptron to 
fire, the weight w, will be positive; if 
the feature X, inhibits the per- 
ceptron, the weight w; will be nega- 
tive. The perceptron itself consists 
of the weights, the summation pro- 
cessor, and the adjustable threshold 
processor. Learning is a process of 
modifying the values of the weights 
and the threshold. It is convenient 
to implement the threshold as just 
another weight wg (as in Figure 6). 
This weight can be thought of as 
the propensity of the perceptron to 

FIGURE I. A Simple Hopfield network. Units have binary states (black represents “on” and 
White represents “off”), and connectlon weights are symmetric. 
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FIGURE 2. The four stable states of a Particular Hopfleld net. 
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FIGURE 3. A Hopfield net as a model of content-addressable memory. To retrieve a Pattern, 
we need only supply a portion of it. 
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FIGURE 4. A simplifitid view of what a Houfleld net computes. 
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fire irrespective of its inputs. The 
perceptron of Figure 6 fires if the 
weighted sum is greater than zero. 

A perceptron computes a binary 
function of its input. Multiple per- 
ceptrons can be combined to com- 
pute more complex functions, as 
shown in Figure 7. 

Such a group of perceptrons can 
be trained on sample input/output 
pairs until it learns to compute the 
correct function. The amazing 
property of perceptron learning is 
this: whatever a lperceptron can 
compute, it can lea:m to compute! 
We will demonstrate this in a mo- 
ment. At the time perceptrons were 
invented, many people speculated 
that intelligent systems could be 
constructed out of perceptrons (see 
Figure 8). 

Since the perceptrons of Figure 7 
are independent of one another, 
they can be separately trained. Let 
us concentrate on what a single per- 
ceptron can learn to do. Consider 
the pattern classification problem 
shown in Figure 9. Given values for 
xt and x2, we want to train a per- 
ceptron to output 1 if it thinks the 
input belongs to the class of white 
dots, and 0 if it think:s the input be- 
longs to the class of black dots. We 
have no explicit rule IO guide us; we 
must induce a rule from a set of 
training instances. We will now see 
how perceptrons can learn to solve 
such problems. 

First, it is necessary to take a close 
look at what the perceptron com- 
putes. Let 2 be an input vector (XI, 
xp . . x,,). Notice that the weighted 
summation function g(x) and the 
output function o(:T) can be defined 
as: 

g(x) = iW$; ;;;(j 

o(x) = 1 
1 if g(x) > 0 
0 if g(x) < 0 

Consider the case where we have 
only two inputs (as in Figure 9). 
Then: 

964 = W,) + WlXl + w2x2 

Ifg(x) is exactly 0, the perceptron 

cannot decide whether to fire or 
not. A slight change in inputs could 
cause the device to go either way. If 
we solve the equation g(x) = 0, we 
get the equation for a line: 

WI wo 
x2=--x1-- 

WP WZ 

The location of the line is com- 
pletely determined by the weights 
wet WI 3 and ~2. If an input vector 
lies on one side of the line, the per- 
ceptron will output 1; if it lies on 
the other side, the perceptron will 
output 0. A line that correctly sepa- 
rates the training instances corre- 
sponds to a perfectly functioning 
perceptron. Such a line is called a 
decision surface. In perceptrons with 
many inputs, the decision surface 
will be a hyperplane through the 
multidimensional space of possible 
input vectors. The problem of 
learning is one of locating an ap- 
propriate decision surface. 

We will present a formal learning 
algorithm in a moment. For now, 
consider the informal rule: 

If the perceptron fires when it 
should not fire, make each w; 
smaller by an amount propor- 
tional to x,. If the perceptron 
fails to fire when it should fire, 
make each w, larger by a simi- 
lar amount. 
Suppose we want to train a three- 

input perceptron to fire only when 
its first input is on. If the per- 
ceptron fails to fire in the presence 
of an active xl, we will increase wt 
(and we may increase other 
weights). If the perceptron fires 
incorrectly, we will end up decreas- 
ing weights that are not wt. In addi- 
tion, wg will find a value based on 
the total number of incorrect fir- 
ings versus incorrect misfirings. 
Soon, WI will become large enough 
to overpower wn. while w2 and ws 
will not be powerful enough to fire 
the perceptron, even in the pres- 
ence of both xp and xs. 

Now let us return to the func- 
tions g(x) and o(x). While the sign of 
g(x) is critical to determining 
whether the perceptron will fire, 
the magnitude is also important. 

The absolute value of g(x) tells how 
far a given input vector 3 lies from 
the decision surface. This gives us a 
way of characterizing how good a 
set of weights is. Let 3 be the weight 
vector (wg, wt . . w,,), and let X be 
the subset of training instances mis- 
classified by the current set of 
weights. Then define the Perceptron 
Criterion Function, J(S), to be the 
sum of the distances of the misclas- 
sified input vectors from the deci- 
sion surface: 

J(3) = c gwpz, = c (rdfl I I PEX i=n IEX 

To create a better set of weights 
than the current set, we would like 
to reduce J(8). Ultimately, if all 
inputs are classified correctly, 
J(3) = 0. 

How do we go about minimizing 
J(m)? We can use a form of local 
search known as gradient descent.2 
For our current purposes, think of 
J(3) as defining a surface in the 
space of all possible weights. Such a 
surface might look like the one in 
Figure 10. 

In the figure, weight wg should 
be part of the weight space, but is 
omitted here because it is easier to 
visualize J in only three dimensions. 
Now, some of the weight vectors 
constitute solutions, in that a per- 
ceptron with a solution vector will 
classify all of its inputs correctly. 
Note that there are an infinite 
number of solution vectors. For any 
solution vector 3,,, we know that 
J(3,) = 0. Suppose we begin with a 
random weight vector 3 that is not 
a solution vector. We want to slide 
down the J surface. There is a 
mathematical method for doing 
this-we compute the gradient of 
the function]@). Before we derive 
the gradient function, we will refor- 
mulate the Perceptron Criterion 
Function to remove the absolute 
value sign: 

JV) =z 
Z’ if 5F’ is misclassified 

iz 
SEX 

as a negative example 
-3 if f is misclassified 

as a positive example 
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FIGURE 5. A neuron and a perceptron. 
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7. A perceptron with many inputs and many outputs. 
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eacuR6 6. Perceptron with adlustable threshOld implemented 
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i FIGURE 8. An early notion Of an intelligent System built 
: out of trainable perceptrons. 
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linearly separable, because we can draw a line that separates one 
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FIGURE 10. Adjusting the weights by gradient descent, 
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Recall that X is the set of misclassi- 
fied input vectors. 

Now, here is VJ, the gradient of 
J(3) with respect to the weight 
space: 

VJ(W =c 
f if x’ is misclassified 

.TE.X as a negative example 
-T if Z’ is misclassified 

( as a positive example 

The gradient is a vector that tells 
us the direction to move in weight 
space in order to reduce J(3). In 
order to find a solution weight vec- 
tor, we simply change the weights 
in the direction of the gradient, re- 
compute J(3) recompute the new 
gradient, and iterate until J(3) = 0. 
The rule for updating the weights 
at time t + 1 is: 

Or in expanded form: 

sif,,, =73,-t 

rlc 
2 

I 

if R is misclassified 

PEX 
as a negative example 

-2 if R is misclassified 
as a positive example 

77 is a scale factor that tells us how 
far to move in the adirection of the 
gradient. A small 71 will lead to 
slower learning, but a large 77 may 
cause a move through weight space 
that “overshoots” the solution vec- 
tor. Taking 77 to be a constant gives 
us what is usually called the “fixed- 
increment perceptron learning al- 
gorithm”: 

Algorithm: FlxeU-#ncrement 
Perceptron Learmlng 
Given: a classification problem with 
n input features (x1, -1~2 . x,,) and 
two output classes. 

Compute: a set of weights w,), w,, 
w:! . . w,,) that will cause a per- 
ceptron to fire whenever the input 
falls into the first output class. 

1. Create a perceptron with n + 1 
inputs and n + 1 weights, where 
the extra input x’” is always set to 
1. 

2. Initialize the weights (w,,, w, . . . 
w,,) to random real values. 

3. Iterate through the training set, 
collecting all of the examples 
misclassified by the current set of 
weights. 

4. Ifall examples are classified cor- 
rectly, output the weights and 
quit. 

5. Otherwise, compute the vector 
sum S of the misclassified input 
vectors, where each vector has 
the form (x0, x1 . . x,,). In creat- 
ing the sum, add to S a vector P 
if Z’ is an input for which the 
perceptron incorrectly fails to 

fire, but add vector -? if 3 is an 
input for which the perceptron 
incorrectly fires. Multiply the 
sum by a scale factor 77. 

6. Modify the weights (w,,, WI . 
w,,) by adding the elements of 
the vector S to them. Go to 
step 3. 

The perceptron learning algo- 
rithm is a search algorithm. It be- 
gins in a random initial state and 
finds a solution state. The search 
space is simply all of the possible 
assignments of real values to the 
weights of the perceptron, and the 
search strategy is gradient descent. 

So far, we have seen two search 
methods employed by neural net- 
works: gradient descent in per- 
ceptrons and parallel relaxation in 
Hopfield networks. It is important 
to understand the relation between 
the two. Parallel relaxation is a 
problem-solving strategy, analo- 
gous to state space search in sym- 
bolic AI. Gradient descent is a 
learning strategy, analogous to in- 
ductive techniques in symbolic AI. 
In both symbolic and connectionist 
AI, learning is viewed as a type of 
problem solving, and this is why 
search is useful in learning. But the 
ultimate goal of learning is to get a 
system into a position where it can 
solve problems better. Do not con- 
fuse learning algorithms with oth- 
ers. 

The Perceptron Convergence Theo- 
rem, due to Rosenblatt [24], guaran- 
tees that the perceptron will find a 
solution state (i.e.. it will learn to 

classify any linearly separable set of 
inputs). Figure 11 shows a per- 
ceptron learning to classify the in- 
stances of Figure 9. Remember that 
every set of weights specifies some 
decision surface-in this case some 
two-dimensional line. 

The introduction of perceptrons 
in the late 1950s created a great 
deal of excitement in the research 
community. Here was a device that 
strongly resembled a neuron and 
for which well-defined learning 
algorithms were available. There 
was much speculation about how 
intelligent systems could be con- 
structed from perceptron building 
blocks. The book, Perceptrons, [20] 
put an end to such speculation by 
analyzing the computational capa- 
bilities of the devices. The authors, 
Minsky and Papert, noticed that 
while the Convergence Theorem 
guaranteed correct classification of 
linearly separable data, most prob- 
lems do not supply such nice data. 
Indeed, the perceptron is incapable 
of learning to solve some very sim- 
ple problems. One example given 
in the book is the exclusive-or 
(XOR) problem: Given two binary 
inputs, output 1 if exactly one of the 
inputs is on, and output 0 other- 
wise. We can view XOR as a pat- 
tern-classification problem in which 
there are four patterns and two 
possible outputs (see Figure 12). 

The perceptron cannot learn a 
linear decision surface to separate 
these different outputs, because no 
such decision surface exists. No single 
line can separate the “1” outputs 
from the “0” outputs. Minsky and 
Papert gave a number of problems 
with this property: telling whether 
a line drawing is connected, sepa- 
rating figure from ground in a pic- 
ture, etc. Notice that the deficiency 
here is not in the perceptron learn- 
ing algorithm, but in the way the 
perceptron represents knowledge. 

If we could draw an elliptical 
decision surface, we could encircle 
the two “1” outputs in the XOR 
space. However, perceptrons are 
incapable of modeling such sur- 
faces. Another idea is to employ two 
separate line-drawing stages. We 
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could tlixw one line to isolate the 
point (xt = I, x2 = I) and then ;ttt- 
other line to divide the t-entainitig 
Lllt.ee points into t\vo categories. 
Using this idea, we cm construct a 
tiiultilaycl- petxxptroti (a series of 
lmqm-ms) to solve the poblem. 
Such ;I clevicc is slio~vn in Figure I :4. 

NOW how the output of‘ the first 
petxq~tron serves as me of‘ the in- 
p’s to the secotitl perceptroti, with 
a large, ticg;ltively wciglitecl con- 
ncction. If the first lxrcelmw~ sees 
the input (xt = I, s:! = I) it will send 
:t tttassive itihibitot~y l~ulsc to the 
sccot~tl pet~celmw~. causing that 
unit to oull~ut 0 txprdlcss of its 
other inputs. If’eitlier of ittputs is 0, 
the second l~ercel~troti gets ii0 itilii- 
bition f‘rotn the first percepttwit, 
attd it outputs I if’ citliet. of‘ the itt- 
puts is I. 

l‘he LISC of‘ ttiultilayer pa.- 
ceptrons. then, solves our know- 
CtlgC t~el~t~escnt;ttioti pt‘ol~lem. 
IHowever, it intt-otluces it serious 
learning l~td~lem: the Cotivcrgettce 
‘l‘lteotxm1 does not cxtettcl to tiittlti- 
layer lxt~cep~txms. .l‘lte pcrcepttx~tt 
himing ;tlgot~i~htit cati correctI) 
adjust weights between ittpitts and 
outplrts. but it cattitot x~just 
weights /w/~wP~~ perceptrotis. In 
ITigrtrc 13, tlic itiliibitot~y weight 
“-0.0” \\‘;I!4 llatltl-coded, not 
Ica~metl. At tltc time I’c~~c~p~~xv w;ts 
l~ttblisltctl, no otlc knelt how multi- 
layer lxrccl~~rotis cottltl be tiiatlc to 
lwtm. In fitct, Minsky and I’apt 
sl”ctllalccl: 

‘l‘lte p”l‘c”l’tl‘otl has tltally 
l’eatutw that ;i~lr;tct altctitioti: 
its li1tc;trity. its it1triguing 
Icariiitig theot~m there is 
I10 I‘c’~Isotl to suppos’ that all), 

01’ tltcse virtues carry over to 
the titait)~-l;tyercd version. 
Ncverthcless, WC cottsitlet. it to 
IX ;1tt ititl~ot~t;tttt tTsc;ux:ll 

l~txd~lc~tt to clucitlate (or tx- 
,jcct) our ittlttitive ,jtttlgement 
tltat the estuisiot1 is stciile. 
Despite the idetttil’ic;ttiott 01‘ this 

iti1lx~1~t~tttt t~~~r~lt l~rol~letit. ;tctLt;tl 
rcscat~clt it1 perrcplroti learning 
cattic IO ;I lt;dt itt tlte IYiOs. ‘l‘he 
field s;t\v little ititctwt until the 
I!)HOs. \vhcti sevcixl learning prw 

X2 
A k=lO 

0 

0 

1 k wo WI w2 

FIGURE 19. A perceptron learning to solve a classification problem. Ii is the number of 
Passes through the training data (i.e., the number of iterations of steps 3 through 6 of the 
fixed-increment perceptron learning algorithml. 

10 0.41 -0.17 0.14 

100 0.22 -0.14 0.11 

300 -0.10 -0.08 0.07 

635 -0.49 -0.10 0.14 
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I’ 

FIGURE 12. A classification problem, XOR, that is not linearly separable. 
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FIGURE II. A multilayer perceptron that solves the XOR problem. 
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cedures to1 multilayer per- 
ceptron-also callctl multilayel 
networks-were proposed. The 
next few sections are devoted to 
such learning procedures. 

Sackpropagation 1Uetworks 
As suggested by Figure 8 and the 
I-‘~t-crf~lro~ls critique, the ability to 
train multilayer networks is an im- 
portant step in the direction of 
building intelligent machines out of 
neuron-like components. Let us 
reflect for a moment on why this is 
so. Our goal is to take a relatively 
amorphous mass of neuron-like 
elements and teach it to perform 
usef’ul tasks. We would like it to be 
f;tst and resistant to damage. We 
would like it to generalize from the 
inputs it sees. We would like to 
b~lilcl these neural masses on a very 
large scale, and we wo~~ld like them 
to be able to learn ef‘ficiently. Per- 
ceptrons got us part of’ the way 
there, but we say that they were too 
weak coml,Lltationally. So we turn 
to more complex, multilayer net- 
works. 

What can a multilayer network 
compute? l‘he simple answer is: 
cor\~thi,q! Given a sel: of inputs, we 
can use suliimatiori/lhl.eshold units 
as simple AND, OK. and NOT 
gates by appropriately setting the 
threshold and connection weights. 
We can build any arbitrary combi- 
national circuit out of such units. In 
f’,lct, if we are allolzed to use feed- 
back loops, we can build a general- 
purpose computer with them. 

The major problem is learning. 
The knowledge representation sys- 
tem employed by neural nets is 
quite opaque: they ~lust learn their 
own representations because pro- 
Cgranlming them by lland is impossi- 
ble. I’erceptrons had the nice prop- 
erty that whatever they could 
compute, they could learn to com- 
pute. Does this property extend to 
multilayer networks? The answer is 
yes, sort of’. Backpropqation is a 
step in that direction. 

It will be useful to deal first with 
a subclass of’ multilayer networks, 
namely full), conmecled, layered, 
feeclforward networks. A sample of 

such a network is shown in Figure 
14. This network has three layers, 
although it is possible and some- 
times useful to have more. Activa- 
tions flow from the input layer 
through a hidden layer, then on to 
the output layer. Each unit in one 
layer is connected in the forward 
direction to every unit in the next 
layer. As usual, the knowledge of 
the network is encoded in the 
weights on connections between 
units. In contrast to the parallel re- 
laxation method used by Hopfield 
nets, backpropagation networks 
perform a simpler computation. 
Because activations flow in only one 
direction, there is no need for an 
iterative relaxation process. The 
activation levels of the units in the 
output layer determine the output 
of’ the network. 

The existence of hidden units 
allows the network to develop com- 
plex feature detectors, or i~fer~cll 
,.c,~~~,sc~rltcltio,~s. Figure 15 shows the 
application of a three-layer network 
to the problem of recognizing dig- 
its. The t\\,o-dimensional grid con- 
taining the numeral “7” forms the 
input layer. A single hidden unit 
might be strongly activated by a 
horizontal line in the input, or per- 
haps a diagonal. The important 
thing to note is that the behavior of 
these hidden units is automatically 
learned, not preprogrammed. In 
Figure 15, the input grid appears to 
be laid out in two dimensions, but 
the fully connected network is una- 
ware of this 2-D structure. Because 
this structure can be important, 
many networks permit their hidden 
units to maintain only local connec- 
tions to the input layer (e.g., a dif- 
ferent 4-by-4 sub-grid for each hid- 
den unit). 

The hope in attacking problems 
like handwritten character recogni- 
tion is that the neural network will 
not only learn to classify the inputs 
it is trained on, but will grrwdizr 
and be able to classify inputs that it 
has not yet seen. We will return to 
generalization in the next section. 

It seems reasonable at this point 
to express the following: “All neu- 
ral Ilets seem to be able to do is clas- 

sification. Hard AI problems like 
planning, natural language pars- 
ing, and theorem proving are not 
simply classification tasks, so how 
do connectionist models address 
these problems?” Most of the prob- 
lems we kvill see in this article are 
indeed classification problems, be- 
cause these are the problems that 
neural networks are best suited to 
handle at present. A major limita- 
tion of current network formalisms 
is their way of’ dealing with phe- 
nomena that involve time. This lim- 
itation is lifted to some degree in 
work on recurrent networks (e.g. 
[ 14]), but for now, we will concen- 
trate on classif’ication problems. 

Let LIs now return to back- 
propagation networks. The unit in 
a backpropagation network re- 
quires a slightly clif’f‘erent activation 
function from the perceptron. Both 
functions are shown in Figure 16. A 
backpropagation unit still sums up 
its weighted inputs, but unlike the 
perceptron, it produces a real value 
between 0 and I as output, based 
on a sigmoid (or S-shaped) func- 
tion. Let SUVI be the weighted sum 
of the inputs to a unit. The equa- 
tion for the unit’s output is given 
by: 

1 
output = ] + p-““” 

Like a perceptron, a back- 
propagation network typically 
starts out with a random set of 
weights. The network adjusts its 
weights each time it sees an input/ 
output pair. Each pair requires two 
stages: a forward pass and a back- 
ward pass. The forward pass in- 
volves presenting a sample input to 
the network and letting activations 
flow until they reach the output 
layer. During the backward pass, 
the network’s actual output is con- 
pared to the target output, and 
error estimates are computed for 
the output units. The weights con- 
nected to the output units can be 
adjusted in orcler to reduce those 
errors. We can then use the error 
estimates of the output units to de- 
rive error estimates for the units in 
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the hidden Iayers. Finally, errors 
are propagated back to Lhe connec- 
Lions stemming f’rom the input 
uniLs. 

Unlike the perceptron learning 
algorithm of’ the last section, the 
backpropagation algorithm usually 
updates its weights increnienLally, 
after seeing each input/output pair. 
After it has seen all of‘ the input/ 
output pairs (and adjusted its 
weights that many times), we say 
that one c~jm/r has been complcLeci. 
‘l‘raining ii backpropagation nct- 
work usually requires many epochs. 

Kef‘er back LO Figure 14 for the 
basic structure on which the follow- 
ing algorithm is basccl. 

AlgorPthm: BOdrpPOpOgUtiOn 

Given: A set of input/output vector 
pairs. 
CompuLe: A seL of’ weighLs 1Or ;I 
three-layer network that maps in- 
puts onto corresponding outputs. 

1. Let A be the number of units in 
the inpuL layer, as determined 
by the length of’ the Lraining 
input vectors. Let C be the 
number of‘ units in the outpill 
layer. Now choose B, the num- 
ber of’ units in the hidden 
layer.” As shown in Figure 14, 
the inpuL and hidden layers 
each have an exLra unit used 
for thrcsholding; theretore, 
die units in these layers will 
sometimes be indexed by the 
ranges (0 . A) and (0 . B). 
We denote Lhe ;dvation levels 
of‘ the units in the input layers 
by .r,, in the hidden layer by h,, 
and in the outpuL layer by 0,. 
Weights connecting the input 
layer to the hidden layer are 
denoted by 70 I,,, where sub- 
script i indexes Lhe input units. 
andj indexes the hidden units. 
Iikcwise, weights connecLing 

‘(~rxlicnt &swnt is 111~ smw thin!: as h//l 
d/dur,g. ~~~dulo 2 cll;ulgc ill sipI. Ilill climb 
il1.q is 01w 01’ tile wcwk r~~dhod~ 0ltc11 used ill 
aylx,lic Al. 

~__ 

ij 

input 
units 

FIGURE 14. A multilayer network. In this diagram 4 /r,, and olrepresent unit actiuatlon 
levels of input, hidden, anu output units. Weights on connections between the input and hidden 
layers are denoted here by w llJ, while weights on connections between the hidden aMl output 
layers are denoted by IY 211. 
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FIGURE 15. using a multilayer network to learn to ciasslfv hanllwrltten diglts. The hidden 
units learn to recognize important features in the input. 

FDGURE 16. The stepwise activation function of the perceptron (left), and the sigmoid 
activation function of the backpropagation unit (right). The sigmolfl function is continuous and 
differentiable, features requirerl by the backpropagation algorithm. 
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2. 

the hidden layer to the output 
layer are denoted by u12,, with i 
indexing to hidden units and ,j 
indexing output Imits. 
Initialize the lvcights in the net- 
work. Each weight should be 
set randomly to Ilumber be- 
tween - 0. I and 0.1. 

7uL, = J~utrtlottr( -0. 1 ,O. 1) 
for all i = 0 ,i,j = 1 . . H 

7~2,~ = mdottl(-O. 1 ,o. 1) 
for all i = 0 . . . 17, j = I C 

3. 

4. 

5. 

(5. 

5. 

Initialize the activations of the 
thresholding units. These 
should never change their val- 
ues. 

X,) = 1 .o 

h,, = 1 .o 

Choose an inpulioutput pair. 
Suppose the illput vector is x, 
and the target output vector is 
Y,. Assign activation levels to the 
input uiiits. 
Propagate the .aclivations from 
the units in the input layer to 
the units in the hidden layer, 
using the activation fmiction of 
Figure 1 ci: 

h, = 
I 

-T- 1 + (,r-, II it I’,\’ 

for all j = 1 . B 

Note that i ranlges from 0 to A. 
zo l,,, is the threshotding weight 
for hidden unit j (its propensity 
to tire irrespective of its in- 

puts). .Yo is 2ltWilyS 1.0. 
t’ropagdte the ;activations from 
the units in the hidden layer to 
the miits in tlhe output layer. 

1 
,I I = -7- 1 + (,--,. II W?,~II, 

for all j = 1 C 

Again, the thrcsholding weight 
zo2,,, for output unit j plays a 
rote in the weighted s~mma- 

lion. /I,, is always 1 .O. 

Compute the errors of the 

units in the output layer, de- 
noted 62,. Errors are based on 
the network’s actual output (0,) 
and the target output (s,). 

62, = o,( 1 - o,)o’, - 0,) 

for all ,j = I C 

8. Compute the errors of the 
units in the hidden layer, de- 
noted 6 1,. 

(.’ 

61, = h,( t - ti,)c 62, . ?u2,, 
,= I 

fi)r a11 j = I . B 

9. Adjust the weights between the 
hidden layer and output layer.” 
‘l‘he learning rate is denoted q; 
its function is the same as in per- 
ceptron learning. A reasonable 
value of’ 77 is 0.35. 

&02,, = 77 . 62, . h, 
for all i = 0 H, j = 1 . C 

10. Acljust the weights between the 
input layer and the hidden 
layer. 

AU I,, = 17 . 6 1, . X, 
fiJr all i = 0 . A,j = 1 R 

II Go to step 4 and repeat. When 
all of’ the input/output pairs 
have been presented to the net- 
work, one epoch has been com- 
pleted. Kepeat steps 4 to 10 foi 
as marly epochs as desired. 

The algorithm generalizes 

straightforwardly to networks of 
more than three layers.” For each 
extra hidden layer, insert a forward 
propagation step between steps 6 
and 5; an error computation step 
between steps 8 and 9; and a weight 
achustmellt step between steps 10 
and 1 I. Error computation for hid- 
den units should use the equation 
in step 8, but with i ranging over 
the units in the next layer, not nec- 
essarily the output layer. 

The speed of learning can be in- 
creased by modifying the weight 
modification steps 9 and IO to in- 
clude a momentum term (Y. The 
weight update formulas become: 

&‘2,,(1 + 1) = 77 . 62, h, + (~A7~2,,(1) 

A-cul,,(t + 1) = 77 . 81, x, + aA701,,(1) 

where tr,, x,. 61, and 62, are mea- 
sured at time t + 1. Azu,,(t) is the 
change the weight saw during the 
previous f‘or\\,al.d-back\l,arcl pass. If 
a is set to 0.9 or so, learning speed 
is iniproved.i 

Recall that the activation flmc- 

tion has a sigmoid shape. Since infi- 
nite lveights would be required foi 
the actual outputs of the network to 
reach 0.0 and 1 .O. binary target 
outputs (the J,‘S of‘steps 4 and i) are 
usually given as 0.1 and 0.9 instead. 
The sigmoid is required by back- 
propagation because the derivation 
of the weight update rule requires 
that the activation function be both 
continuous and dif’f’erentiable. 

The derivation of the weight 
update rule is more complex than 
the derivation of the fixed-incre- 
ment update rule for perceptrons. 
but the idea is much the same. 
‘l‘herc is an error function that de- 
fines a surf’ace over weight space, 
and the weights are modified in the 
direction of’ the gradient of the sur- 
face. See [2%27] for details. Inter- 
estingly, the error surface fhr mu- 
titayer nets is more complex than 
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the error surface for perceptrons. 

One notable difference is the exis- 

tence of‘ local minima. Kecall the 

bowl-shaped space we used to ex- 

plain perceptron learning (Figure 

IO). As we modified weights, we 

n~ovcd in the direction of’ the bot- 

tom of the bowl; eventually, we 

reached it. A backpropagation net- 

work, however, may slide down the 

error surface into a set of weights 

that cloes not solve the problem it is 

being trained on. If that set of 

weights is at a local minimum, the 

network will never reach the opti- 

mal set of weights. T‘hus, we have 

I10 analogLIe of the Perceptron 

Convergence TheoreIn for back- 

propagation networks. 

There arc several methods of 

combating the problem of’ local 

minima. ‘l‘he momentum factor (Y, 

which teIIds to keep the weight 

changes moving in the saIiie direc- 

tion, allows the algorithm to skip 

over small minima. Siinulated an- 

nealing, to be discussed later, is also 

Lrsefr~l. Finally, adjusting the shape 

of a Linit’s act&ion function can 

have an effect on the network’s SLIS- 

ceptibility to local minima. 

Fortunately, backpropagation 

networks rarely slip into local min- 

ima. It turns out that, especially in 

larger networks, the high-dimen- 

sional weight space provicles plenty 

of degrees of freedom f’or the algo- 

rithm. The lack of a convergence 

theorem is not a problenI in prac- 

tice. However, this pleasant feature 

of’ backpropagation was not discov- 

ered until recently, when digital 

compLIters became fast enough to 

support large-scale simulations of 

neural networks. The back- 

propagation algorithm was actually 

clerivecl independently by a nuin- 

ber of’ researchers in the past, but it 

was cliscardcd as many times be- 

cause of the potential problems 

with local Ininima. In the days be- 

fiIre fast digital computers, re- 

searchers coulcl only judge theiI 

idea by proving theorems about 

the111, and they had no idea that 

local minima would tLIrn oLIt to be 

rare in practice. l‘hc modern forni 

of’ backpropagation is of’tcn cred- 

t 
training 
set 

s 

1 A2 

Training Time * 

FIGURE q 7. A common generalization effect in neural network learning. 
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ited to [ 16, 22, 25, 3 11. 

Backpropagation networks are 

not without real problems, how- 

ever-the most serious being the 

slow speed of learning. Even simple 

tasks require extensive training 

periods. The XOR problem, for 

example, involves only five units 

a~nd nine weights, but it can reqLLire 

many passes through the foLLI 

training cases before the weights 

converge, especially if’ the learning 

paralneters are not carefully tuned. 

Also, simple backpropagation does 

not scale LIP very well. ‘The number 

of‘ training examples required is 

superlinear in the size of the net- 

\vork. 

Since backpropagation is inher- 

ently a parallel, distributed algo- 

rithm, the idea of improving speed 

by bLIilding special-purpose back- 

propagation hardware is attractive. 

However, f’ast new variations of 

backpropagation and other learn- 

ing algorithms appear frequently in 

the literature, e.g., [7]. Uy the tiIne 

a11 algorithm is transformed into 

hardware ancl embedded in a com- 

puter system, the algorithm is likely 

to be obsolete. 

Generalkatlon 
If all possible inputs and outputs 

are shown to a backpropagation 

network. it will (probably, eventu- 

ally) find a set of weights that maps 

the inpLIts onto the oLitpLIts. Foi 

many Al problems, however, it is 

impossible to give all possible in- 

puts. Consider face recognition ancl 

character recognition. -l-here are an 

infinite nLImber oforicntations and 

expressions to a face, and an infi- 

nite number of fonts and sizes for a 

character, yet hLLmans learn to clas- 

sify these objects easily from only a 

few examples. We woulcl hope that 

oLIr networks woulcl do the sanle. 

And in fact, backpropagation shows 

promise as a generalization mecha- 

nism. If‘we work in a donwin where 

similar inputs get mapped onto 

similar outputs, backpropagation 

will interpolate when given inpLIts it 

has never seen befijre. 

There are some pitfalls, how- 

ever. Figure I7 shows the common 

generalization effect during a long 

training period. During the first 

part of the training, performance 

on the training set improves as the 

network adjusts its weight through 

backpropagation. Performance on 

the test set (examples that the net- 

work is W/ allowed to learn on) also 

improves, although it is never qLIite 

as good as the training set. Af‘ter a 

while, network performance 

reaches a plateau as the weights 

shift around, looking for a path to 

frirther improvement. Ultimately, 

SLICK a path is fi)und, and perfor- 

mance on the training set improves 

again. BLit performance on the test 

set @.c WKW. Why? The network 

has begLIn to memorize the inclivid- 

ual inpLIt/oLItpLIt pairs rather than 

settling for weights that generally 

describe the mapping f’or aII casts. 

With thousands of’ real-valued 

weights at its disposal, back- 
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propagation is theoretically capable 
of storing entire training sets; with 
enough hidden units, the algorithm 
could learn to assign a hidden unit 
to every clistinct input pattern in 
the training set. It is a testament to 
the power of backpropagation that 
this actually happens in practice. 

Of course it is undesirable for 
backpropagation to have that much 
power. ‘There are several ways to 
prevent it from resorting to a table- 
lookup scheme. One way is to stop 
training when a plateau has been 
reached, on the assumption that 
any other improvement will come 
through cheating. Another way is 
to add deliberately small amounts 
of noise to the training inputs. The 
noise sl~o~~lcl be enough to prevent 
memorization, but it should not be 
great enough to confuse the classi- 
fier. A third way to help generaliza- 
tion is to reduce the number of hid- 
den units in the network, creating a 
bottleneck between the input and 
output layers. Confronted with a 
bottleneck, the network will be 
forced to come up with compact 
internal representations of its in- 
puts. 

Finally, there is the issue of ex- 
ceptions. In many domains, there 
arc general rules, but also excep- 
tions to the rules. For example, we 
can generally make the past tense 
of’ an Ettglish verb I:ry adding “-ed” 
to it, but this is not tt ue of verbs like 
“sing, ” “think,” and “eat.” When we 
show a network many present/past 
tense pairs, we would like it to gen- 
eralize in spite of the exceptions- 
but not to generalize so far that the 
exceptions are lost. Backpropaga- 
tion perf’orms f’airly well in this re- 
gard, as do simple perccptrons, as 
reported in [Xl. 

EOltZmt#t#t# Machiries 

A Boltzmann machine is a variation 
on the idea of a Hopfield network. 
Recall that pail-s of’ 1units in a Hop- 
f‘ield net are connected by symmet- 
ric weights. Units update theit 
states asynchronouslly hy looking at 
then local connect.ions to other. 
units. 

In aclclition to serT;ing as content- 

addressable memories, Hopfield 
networks can solve a wide variety of 
constraint satisfaction problems. 
Each unit can be viewed as a hy- 
pothesis. Mutually supporting hy- 
potheses are connected with posi- 
tive weights, and incompatible 
hypotheses are connected with neg- 
ative weights. 

A major limitation of Hopfield 
networks is that they settle into local 
minima. In constraint satisfaction 
tasks we need to find the globally 
optimal state of the network. This 
state corresponds to an interpreta- 
tion that satisfies as many interact- 
ing constraints as possible. Unfor- 
tunately, Hopfield networks cannot 
find global solutions because they 
settle into stable states via a com- 
pletely distributed algorithm. If a 
network reaches a stable state like 
state A in Figure 4, that means no 
single unit is willing to change its 
state in order to move uphill; thus 
the network will never reach glo- 
bally optimal state B. If several 
units decided to change state simul- 
taneously, the network might be 
able to scale the hill and slip into 
state B. We need a way to push net- 
works into globally optimal states 
rvhile maintainittg OLII- distributed 
approach. 

Boltzmann machines solve this 
problem by employing a search 
techttique called si,,~tc/atrd CI?/~PC~/~‘IIR 
[ 151. Space limitations preclude a 
full discussion of l~oltzn~ann ma- 
chines; for details, see [ 1 I]. Briefly, 
units in a Boltzmann machine up- 
date their individual binary states 
using stochastic rather than deter- 
ministic rules. At first, units switch 
on and off randomly, but as the 
network “cools down,” they ap- 
proximate a Hopfield network. If 
the cooling procedure is slow 
enough. a Boltzmann machine is 
guaranteed to avoid local minima. 
As in backpropagation networks, 
the weights of’ a l~oltzmann ma- 
chine are usually acquircd via a 
learning algorithm. 

Unsupervised Learning 
Some networks, e.g. [3], do not re- 
ceive target output values from a 

teacher, but instead only receive a 
real-valued signal indicating pun- 
ishment or reward. ‘l‘hese networks 
ad.just their behavior to avoid f’u- 
ture punishment. 

What if a neural network is given 
rto f’eedback for its outputs, not 
even a reinforcement signal? Can 
the network learn anything useful? 
The unintuitive answer is: yes. This 
form of learning is called UXSU;DC~- 
~1’s~~ IP~I~III’~ because no teacher is 
required. Given a set of input data, 
the network is allowed to play with 
it to try to discover regularities and 
relationships between the dif‘ferent 
parts of the input. 

Learning is often made possible 
through some notion of which fea- 
tures in the input set are important. 
But often we do not know in ad- 
vance which features are impor- 
tant, and asking a learning system 
to deal with raw input data can be 
computationally expensive. Unsu- 
pervised learning can be used as a 
“ftature discovery” module that 
precedes supervised learning. 

Consicler the data in Figure IX. 
The group of’ 10 animals, each de- 
scribed by its own set of features, 
breaks down naturally into three 
groups: mammals, reptiles, and 
birds. We wo~~ld like to build a nct- 
work that can l~arrc which group a 
particular animal belongs to, and to 
generalize so that it can identify 
animals it has not yet seen. We can 
easily accomplish this with a six- 
input, three-output backpr-opaga- 
tion network. We simply present 
the network with an input, observe 
its output, and update its weights 
based on the errors it makes. Since 
without a teacher, however, the 
error cannot be computed, we must 
seek other methods. 

0~11. first problem is to ensure 
that only O)LP of the three output 
units becomes active f’or any given 
input. One solution to this problem 
is to let the network settle, find the 
output unit with the highest level of 
activation, set that unit to 1, and set 
all other output units to 0. In otliet 
rvords, the output unit with the 
highest activation is the only one we 
consider to be active. A more 
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neural-like solution is to have the 
output units fight among them- 
selves for control of an input vec- 
tor. The scheme is shown in Figure 
I!). The input units are directly 
connected to the output units, as in 
the perceptron, but the output 
units are also connected to each 
other, via prewired negative, or 
inhibitory, connections. The output 
unit with the most activation along 
its input lines initially will most 
strongly dampen its competitors. 
As a result, the competitors will 
become weaker, losing their power 
of’ inhibition over the stronger out- 
put unit. The stronger unit then 
becomes even stronger, and its in- 
hibiting effect on the other output 
units becomes overwhelming. Soon 
the other output units are all com- 

pletely inactive. This type of mutual 
inhibition is called ~ui~~t~r-tuk~-~~ll 
behavior. One popular unsuper- 
vised learning scheme based on this 
behavior is known as con+titive 
lru )‘t1 ill& 

In competitive learning, output 
units fight for control over portions 
of’ the input space. A simple com- 
petitive learning algorithm is the 
ftillowing: 

1. Present an input vector. 
2. Calculate the initial activation 

for each output unit. 
3. Let the output units tight until 

only one is active. 
4. Increase the weights on connec- 

tions between the active output 
unit and ~LC&W input units. This 
makes it more likely that the out- 
put unit will be active next time 
the pattern is repeated. 

A problem with this algorithm is 
that one output unit may learn to 
be active all the time-it may claim 

all of’ the space of inputs fi)r itself: 
For example, if’ all the weights on a 
unit’s input lines are large. it will 
tencl to bully the other output units 
into submission. Learning will only 

f’urther increase those weights. 
I‘he solution. originally due to 

Kosenblatt (and described in [27]), 
is to ration the weights. The SL~I of 
the weights on a unit’s input lines is 
limited to 1. Increasing the weight 

Dog 1 0 0 
Cat 1 0 0 
Bat 1 0 0 
Whale 1 0 0 
Canary 0 0 1 
Robin 0 0 1 
Ostrich 0 0 1 
Snake 0 1 0 
Lizard 0 1 0 
Alligator 0 1 0 

FIGURE 18. Data for unsupervised learning. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

has-hair? has-feathers? lives in water? 
has-scales? flies? lays eggs? 

FBCURE 18. A competitive learning network. Input units are connected directly to output 
Units. Through the use of inhibitory connections, output units fight for control of input. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

of’ one connection requires that we cording to some natural division of 
decrease the weight of’ some other the inputs. 
connection. Here is the learning 
algorithm: 1. Present ai input vector, denoted 

Algorithm: Competitive 
Learning 

(liven: A network consisting of’ )I bi- 
nary-valued inpLlt units directly 
connected to any number of output 
units. 
I'IW~WC: A set of’ weights such that 
the output unit become active ac- 

(I,, x1’ x,,). 

2. (Xculatc the initial activation 
fill- each 0LitpLit Linit by comput- 

in< ;I weighted SLIIII of‘ its in- 
pLlts.S 

3. Let the output units fight until 
only oiic is active.!’ 

4. Adjust the weights on the input 
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lines that lead to the single active 
output unit: 

XI 

fill- all j = 1 ,I 

where 70, is the weight on the 
connection f’ronl input unit i to 
the active output unit, x, is the 
value ot‘thejth i.oput bit, 1~1 is the 
number of input units thd are 
active in the input vector that 
was chosen in step (I), and 77 is 
the learliing rate (some small 
constant). It can be shown that if’ 
the weights on the connections 
tecding ilito an output unit total 
1 More the weight change, they 
will still total I ;if’ter~\~ards. 

3. Kepeat steps l-4 for all input 
patterns, fiw nmiy epochs. 

.I‘he weight update rule in step 4 
makes the output unit 111orc prone 
to fire when it sees the same input 
again. If’ tlie same input is pre- 
sented over and over, the output 
unlit bzill eveiitwdllp adjust its 
\veights fbr maxini~rn~ activation on 
that input. Bccaure input vectors 
arrive in ;I mixed f>dlion, however, 
output units never settle on a per- 
fect set of‘ weiqlits. I‘lie hope is that 
each will find ;I iiatl~ral group of‘ 
input vectoi-s and gravitate toward 
it, that is, to~vartl high activations 
when presentecl \vith those inputs. 
‘I’he algorithlii halts when the 
\veiglit ch;uigcs becoinc very small. 

it a high level of activation when 
presented with an input f’rom dhet 
cluster. In other words, it may oscil- 
late between the two clusters. Nor- 
mally, another output unit will win 
occ;isionally, and move to claim one 
01‘ the two clusters. However, if the 
other output units are conipletcly 
unexcitable by the input vectors, 
they may never win the competi- 
tion. One solution, called /fwk~ 
I~crvtti~r,q, is to change the weights 
belonging to relatively inactive ou- 
put units as well as the most active 
one. The weight update rule f’ol. 
losing output units is the same as in 
the al~qorithm :tbove, except that 
they move their weights with a 
much sm;dler q (learning rate). An 
alternative solution is to acljust the 
sensitivit\ of‘ ;I11 output unit 
through the use of ;I bias, or acljust- 
;ible tlircaliolcl. Red that this bias 
mechanism \C>IS used in pei-- 
ccptrons, and coi~iwponclet1 to the 
pl-opensity of a unit to tire irrespec- 
tive of’ its Inputs. Output units that 
scltlo~i~ win in the competitive 
learning process can be given largei 
biases. In cff’cct, they are given coii- 
trol over ;I larger portion of‘ the 
input space. III this bray, units that 
cotisistently lose are eventualI) 
given a chance to win and acljust 
their weights iii the dircction of‘ a 
particular cluster. 

‘I‘hc conipetitive learning algo- 
rithtn works ~vell in many cases, but 
it has seine pwblenls. Sometimes, 
one outprit unit uill al\vays win, 
despite the existence of more than 
one clustei- of input vectors. If’ two 
clusters are close together. one out- 
put unit inay lear~i ~weights that give 

Applications 06 Neural 

Networks 

‘I‘he study of‘ neuul networks has 
yielded a number of‘ techniques 
that have been used to approach 
difficult problems with sonic sue- 
cess. For example, Figure 20 shows 
llO\\ a I,;lckl”.op;iS;iti’,n network 
call he trained to discriminate 
anioiig tliff’crent vowel sounds. 
given a pair of f’requencics taken 
l‘rom ;I speech wavef’ornl. A good 
deal of’ connectionist research is 
;ilso tlircc-ted toward the l~rol~leni of‘ 
machine vision. Neural netl+wrks 
provide ;I f’r;~mc\vork fi)r iutegrat- 
ilig the llulllel‘ous constraint 
sources ~iecessiii-Y fill- vision, in a 
Iiighly parallel f’&liion [‘L]. Coniiec- 
tioiiist systeiiis liavc been appliecl in 
LI~:III~ other arcas, including speech 

*l‘here is no reason to pass the weighted sum 
through a sigmoid function, as we did with 
backpropagation. because WC only calculate 
activation levels for the pux-pose of singling 
out the most highly activated output unit. 

“As mentioned earlier, any method for deter- 
mining the most highly acrivated output unit 
is sufficient. Simulators writwn in a serial pro- 
gramming language may dispense with the 
neural circuitry and simply compare activa- 
tions levels to find the maximum. 

generation [28]. combinatorial 
problems [ 131, game playing [29], 
signal processing [IO], image com- 
pression [5], and IWKI f’ollowing 
[23]. 

Since all of these systems rel) 
heavily on automatic learning, we 
can think of’ them as exercises in 
“extensional programming” [5]. 
.I‘here exists some complex rela- 
tionship between input and output, 
and we proqgram that relationship 
into the coinputer by shobing its 
examples from the real world. Con- 
trast this with traditional. “in- 
tensional progranimiiig,” in which 
we write rules or specializecl algo- 
rithms tvithout reference to any 
particular exaniples. In the fornie;~ 
case, \ve hope that the network gen- 
cralizcs to liandle new cases cm- 
rectly; iii the latter case, we hope 
t ha1 1 he algorithm is general 
enough to handle whatever cases it 
rccci\zes. E:xtensional l~rogrminiing 
is a powcrfiil technique because it 
clrastic;tlly cuts clown on knowledge 
acquisition tune, C ‘I m:qor bortlcneck 
in the construction of‘ AI systems. 
Ho\vever, currelIt learning meth- 
ods arc not adequate for the extcii- 
sional pro~grminiing of very coni- 
plex tasks, such as the translation of‘ 
English sentences into ,Japanese. 

Connectionlst AI and 

Symbolic AI 

I‘hc conucctionist appro;d~ to Al is 
quite dif’fcreiit from the traclitional 
synil~olic approach. 130th ap- 
pi-odies are~joined at the piddeni. 
21s both try to address tlif‘f’icult is- 
sues in search, knowledge repre- 
sentation, and learning. I.et us list 
some of the methods they employ: 

Connectionist 
l Se~~i~cl~-I’;~~;~llcl I-claxation. 
l Kno\vletlge Kcpl-csentation- 

L;qc numl,e~ of’ lml-Yaltled 
cotiiicctioii stlX3lgths (Struc- 
turcs of’tcn storecl iis tlistrib- 
utetl patterns of activation). 

l I.e;ll~llillg-lSackl~~.ol~~~~]tioll, 
130ltmi;inii iiiachincs, reiii- 
f’orcemeiit learning. unsupcr- 
\isctl le;trning. 

Symbolic 
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SI l’ellgc IIS ;111d weaknesses. One 
miioi. ;illure of‘ connectionist sys- 
tcnls is that they employ knowledge 
I.el)i,cs”il;ltioris that see111 to be 
tnor(: /~utw~Idf~ than rhcir symbolic 
counwrprts. Nearly AI COIIIIC’C- 
tionist systems have ii strong leaim 
inx compollt’nt. Howcvcr, neu~d 
lletwork Icarning algorithms LISU- 
ally involve ;I hrge nunibcr of train- 
iiig cx~umples and long training 
pcriotls. compaid to their spi- 

frolic cousins. Also, af’tcr ;I network 
has Icarnctl to perfimii ;I tlif‘f’icdt 
task, its knowledge is usually quite 
opqw--;iii ilnpciict~at~le inass of‘ 
comcctioil weights. (ktriiig the 
t1clwol.k to explain its reasoning, 
then, is tlif’ficult. Of‘ COLII‘S~, this 
111ay 1101 IX ;I htl thing. Humans, 
till- cxan~ple. appear to have lit& 
access to the procedures they 11x2 

Liar IIMII~ tasks like speech I-ccogni- 
tion and vision. Ir is no accident 
that the most proiiiisiiig uses foi 
II~LIKI~ Ilctworks arc in these areas 

of’ lo\v-level perception. 
It is tlif‘f‘icult lo see how conncc- 

tionist systems will tackle dil‘f’icult 
pmtkm that symbolic, Sl;lte-space 
search aclcliwses (e.g., clicss, the- 
ol~em-~~~~o\~ing, alid pl;lll~lili~). Pat-- 
dlel rchx;ilion seal-ch, howevei~, 
does have wine advantages wei 
symbolic search. First ot’~iII, it maps 
naturally onto highly parallel hard- 
ware. When such hardwa~~e be- 
coiiic’s widely avaihtdc, parallel re- 
laxation methods will he extremely 
efficient. 1CLoi.e iniportantly, paral- 
Icl relaxation search may prove 
very cft’icient because it cm make 
llSC of’states that tla\Y 110 ;lll;llogLKs 

in symbolic search. If‘ we f‘reczc 21 
network while it is still settling, we 
may not he able to make sense out 
of’ the pattern of activity, but evcn- 
tdy, ;I consistent solution state 
fillls out of the relax;ition process. 
In coiilrast, a symbolic system can 

OUTPUT 
(One for Each of Ten Vowels) 

HOD WHO’D HAD HEED 

Fl F2 

INPUT 
(First and Second Fonnants) 

DECISION REGIONS 

0 500 loo0 1400 

Fl (Hz) 

FIGURE 20. A network that learns to distinguish Vowel sounds (adapted from 1171). 
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wily expand new seaid~ nodes that 
c01~esp011cl to valid, possible states 
ol‘ the \\Y~rltl. 

A good tlwl of’ connectionist re- 
search coiiceri~s itself with nioclcl- 
ing hunmn mental p~wesses. NCII- 
1-d nct\vorks seen1 to display many 
psychologically aincl biologically 
plausible f’calllres such iis content- 
aclclress;ildc nieniol-y, friult toler- 
ance, clistrihud ~el)~“sent~~tioiis, 
arilomatic geileralization. <:an we 
integrate these tlcsirable properties 
illto symbolic AI systems? Cer- 
tainly, highlevel theories of‘ cogni- 
tion can incorporate such features 
as new psychological primitives. 
Practically speaking, we may want 
to use conncctionist architectures 
for low-lcvcl tasks such as vision, 
speech recognition, and memory, 

f&cling results f’rom these niotlulcs 
into svml)olic Al progran~s. An- 
other idea is to take ;I symbolic no- 
tion. :uicl inipleinent it in a connec- 
tionist fl.ainewol-k. A connectiollist 
prodidon system is clcscrilml in 
[:-5O] and ;I coiineclionist semantic 
network is described in [G]. Ulti- 
mately, connectiollists would like to 
see symbolic structures emerge nat- 
urally fiwm c01i1plex interactions 
;iiiiong simple units, in the s;in~e 
way that wetness emerges f’roni the 
conibiii;itioii of‘ hydrogen and oxy- 
gen, although it is an intrinsic prop- 
cay of neither. 

Most of‘ the piwniising atlvan- 
tagcs of colincctionist systems tle- 
scribed in this article are ,just that: 
proinising. A great clcal of’ work 
reni;tins to be done LO turn these 
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promises into resttl1.s. Only time will 

tell how influential connectionist 
niodels will be in the evolution of 

AI research. In arty case, connec- 
tionists can a( least point to the 
brain’s existence as proof that neu- 

ral networks, in some fhrm, are c;t- 
pable of exhibiting intelligent be- 

havior. 
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