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CONNECTIONIST

In our quest to build intelligent
machines, we have but one naturally
occurring model: the human brain.
It follows that one natural idea for
artificial intelligence (AI) is to
simulate the functioning of the
brain directly on a computer. In-
deed, the idea of building an in-
telligent machine out of artificial
neurons has been around for quite
some time. Some early results
on brain-line mechanisms were
achieved by [18], and other resear-
chers pursued this notion through
the next two decades, e.g,, [1, 4, 19,
21, 24]. Research in neural networks
came to a virtual halt in the 1970s,
however, when the networks under
study were shown to be very weak
computationally. Recently, there
has been a resurgence of interest in
neural networks. There are several
reasons for this, including the ap-
pearance of faster digital com-
puters on which to simulate larger
networks, interest in building
massively parallel computers, and
most importantly, the discovery of
powerful network learning
algorithms.

The new neural network archi-
tectures have been dubbed connec-
tionist architectures. For the most
part, these architectures are not
meant to duplicate the operation of
the human brain, but rather receive
inspiration from known facts about
how the brain works. They are
characterized by

® Large numbers of very simple
neuron-like processing elements;

¢ Large numbers of weighted con-
nections between the elements—
the weights on the connections
encode the knowledge of a
network;

¢ Highly parallel, distributed con-
trol; and

® Emphasis on learning internal
representations automatically.

Connectionist researchers con-
jecture that thinking about compu-
tation in terms of the brain
metaphor rather than the digital
computer metaphor will lead to in-
sights into the nature of intelligent
behavior.

Computers are capable of amaz-
ing feats. They can effortlessly store
vast quantities of information.
Their circuits operate in nanosec-
onds. They can perform extensive
arithmetic calculations without
error. Humans cannot approach

these capabilities. On the other
hand, humans routinely perform
simple tasks such as walking, talk-
ing, and commonsense reasoning.
Current Al systems cannot do any
of these things better than humans.
Why not? Perhaps the structure of
the brain is somehow suited to these
tasks, and not suited to tasks like
high-speed arithmetic calculation.
Working under constraints sug-
gested by the brain may make tradi-
tional computation more difficult,
but it may lead to solutions to Al

problems that would otherwise be
overlooked.

What constraints, then, does the
brain offer us? First of all, indi-
vidual neurons are extremely slow
devices when compared to their
counterparts in digital computers.
Neurons operate in the millisecond
range, an eternity to a VLSI de-
signer. Yet, humans can perform
extremely complex tasks, like inter-
preting a visual scene or under-
standing a sentence, in just a tenth
of a second. In other words, we do
in about a hundred steps what cur-

rent computers cannot do in ten
million steps. How can this be pos-
sible? Unlike a conventional com-
puter, the brain contains a huge
number of processing elements
that act in parallel. This suggests
that in our search for solutions, we
look for massively parallel algo-
rithms that require no more than
100 processing steps [9].

Also, neurons are failure-prone
devices. They are constantly dying
(you have certainly lost a few since
you began reading thisarticle),and
their firing patterns are irregular.
Components in digital computers,
on the other hand, must operate
perfectly. Why? Such components
store bits of information that are
available nowhere else in the com-
puter: the failure of one component
means a loss of information. Sup-
pose that we built Al programs that
were not sensitive to the failure ofa
few components, perhaps by using
redundancy and distributing infor-
mation across a wide range of com-
ponents? This would open the
possibility of very large-scale im-
plementations. With current
technology, it is far easier to builda
billion-component integrated circuit
in which 95 percent of the com-
ponents work correctly than it is to
build a perfectly functioning mil-
lion-component machine [8].

Another thing people seem to be
able to do better than computers is
handle fuzzy situations. We have
very large memories of visual, au-
ditory, and problem-solving epi-
sodes, and one key operation in
solving new problems is finding
closest matches to old situations. In-
exact matching is something brain-
style models seem to be good at,
because of the diffuse and fluid way
in which knowledge is represented.

The idea behind connectionism,
then, is that we may see significant
advances in Al if we approach
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problems from the point of view of
brain-style computation rather than
rule-based symbol manipulation. At
the end of this article, we will look
more closely at the relationship be-
tween connectionist and symbolic
Al

Hopfield Networks

The history of Al is curious. The
first problems attacked by Al re-
searchers were problems like chess
and theorem proving, because
these were thought to require the
essence of intelligence. Vision and
language understanding—process-
eseasily mastered by five-year-olds—
were not thought to be difficult.
These days, we have expert chess
programs, and expert medical di-
agnosis programs, but no programs
that can match the basic perceptual
skills of a child. Neural network
researchers contend that there is a
basic mismatch between standard
computer information-processing
technology and the technology
used by the brain.

In addition to these perceptual
tasks, Al is just starting to grapple
with fundamental problems in
memory and commonsense reason-
ing. Computers are notorious for
their lack of common sense. Many
people believe that common sense
derives from our massive store of
knowledge, and more importantly,
our ability to access relevant knowl-
edge quickly, effortlessly, and at the
right time.

When we read the description
“gray, large, mammal,” we auto-
matically think of elephants and
their associated features. We access
our memories by content. In tradi-
tional implementations, access by
content involves expensive search-
ing and matching procedures. Mas-
sively parallel networks suggest a
more efficient method.

A neural network, introduced by
Hopfield [12], proposed one theory
of memory. A Hopfield network
has the following interesting fea-
tures:

® Distributed representation. A mem-
ory is stored as a pattern of acti-

vation across a set of processing
elements. Furthermore, memo-
ries can be superimposed upon
one another—different memo-
ries are represented by different
patterns over the same set of pro-
cessing elements.

® Distributed, asynchronous control.
Each processing element makes
decisions based only on its own
local situation. All of these local
actions add up to a global solu-
tion.

® Content-addressable  memory. A
number of patterns can be stored
in a network. To retrieve a pat-
tern, we need only specify a por-
tion of it. The network automati-
cally finds the closest match.

® Fault tolerance. 1f a few of the pro-
cessing elements misbehave or
fail completely, the network will
still function properly.

How are these features achieved?
A simple Hopfield net is shown in
Figure 1. Processing elements, or
units, are always in one of two states,
active or inactive. Units are con-
nected to each other with weighted,
symmetric connections. A positive
connection indicates that the two
units tend to activate each other. A
negative connection allows an active
unit to deactivate a neighboring
unit.

The network operates as follows.
A random unit is chosen. If any of
its neighbors are active, the unit
computes the sum of the weights on
the connections to those active
neighbors. If the sum is positive,
the unit becomes active, otherwise it
becomes inactive. Another random
unit is chosen, and the process re-
peats until the network reaches a
stable state (i.e., until no more units
can change state). This process is
called parallel relaxation. If the net-
work starts in the state shown in
Figure 1, the unit in the lower left
corner will tend to activate the unit
above it. This unit, in turn, will at-
tempt to activate the unit above it,
but the inhibitory connection from
the upper-right unit will foil this
attempt, and so on.

This network has only four dis-
tinct stable states. They are shown
in Figure 2. Given any initial state,
the network will necessarily settle
into one of these four configura-
tions.! The network can be thought
of as storing the patterns in Figure
2. Hopfield’s major contribution
was to show that given any set of
weights and any initial state, his
parallel relaxation algorithm would
eventually steer the network into a
stable state. There can be no diver-
gence or oscillation.

The network can be used as a
content-addressable memory by setting
the activities of the units to corre-
spond to a partial pattern. The net-
work will then settle into the stable
state that best matches the partial
pattern. An example is shown in
Figure 3.

Parallel relaxation is nothing
more than search, albeit of a style
not usually employed in Al It is
useful to think of the various states
of a network as forming a search
space as in Figure 4. A randomly
chosen state will ultimately trans-
form itself into one of the local
minima namely the nearest stable
state. This is how we get the con-
tent-addressable behavior. We also
get an error-correcting behavior.
Suppose we read the description,
“gray, large, fish, eats plankton.”
We imagine a whale, even though
we know that a whale is a mammal,
not a fish. Even if the initial state
contains inconsistencies, a Hopfield
network will settle into the solution
that violates the fewest constraints
offered by the inputs. Traditional
match-and-retrieve procedures are
less forgiving.

Now, suppose a unit occasionally
fails, say, by becoming active or in-
active when it should not. This
causes no major problem: sur-
rounding units will quickly set it
straight again. It would take the
unlikely concerted effort of many
errant units to push the network
into the wrong stable state. In net-
works of thousands of more highly
interconnected units, such fault tol-

"The stable state in which all units are inactive
can only be reached if it is also the initial state.
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erance is even more apparent—
units and connections can disap-
pear completely without adversely
affecting the overall behavior of the
network.

As we can see, parallel networks
of simple elements can compute
interesting things. The next impor-
tant question is: What is the rela-
tionship between the weights on the
network’s connections and the local
minima into which it settles? In
other words, if the weights encode
the “knowledge” of a particular
network, how is that knowledge
acquired? Knowledge acquisition is
a difficult problem in Al, and one
attractive feature of connectionist
architectures is that their method of
representation (namely, real-valued
connection weights) lends itself
very nicely to automatic learning.

In the next section, we will look
closely at learning in several neural
network models, including per-
ceptrons, backpropagation net-
works, and Boltzmann machines.

Learning in Neural
Networks

The percepiron, an invention of [24]
was one of the earliest neural net-
work models. A perceptron models
a neuron by taking a weighted sum
of its inputs and sending an output
1 if the sum is greater than some
adjustable threshold value (other-
wise it sends 0). Figure 5 shows the
device.

The inputs (x;, x2 ... x,) and
connection weights (wy, we . . . w,)
in the figure are typically real val-
ues, both positive and negative. If
the presence of some feature x;
tends to cause the perceptron to
fire, the weight w; will be positive; if
the feature x; inhibits the per-
ceptron, the weight w; will be nega-
tive. The perceptron itself consists
of the weights, the summation pro-
cessor, and the adjustable threshold
processor. Learning is a process of
modifying the values of the weights
and the threshold. It is convenient
to implement the threshold as just
another weight w, (as in Figure 6).
This weight can be thought of as
the propensity of the perceptron to

FIGURE 1. A simple Hopfield network. Units have binary states (black represents “‘on” and
white represents “off’), and connection weights are symmetric.

+1 -1 +1 -1

FIGURE 3. A Hopfield net as a model of content-addressable memory. To retrleve a pattern,
we need only supply a portion of it.

...................................................................

>

B
FIGURE 4. A simplified view of what a Hopfield net computes.
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fire irrespective of its inputs. The
perceptron of Figure 6 fires if the
weighted sum is greater than zero.

A perceptron computes a binary
function of its input. Multiple per-
ceptrons can be combined to com-
pute more complex functions, as
shown in Figure 7.

Such a group of perceptrons can
be trained on sample input/output
pairs until it learns to compute the
correct function. The amazing
property of perceptron learning is
this: whatever a perceptron can
compute, it can learn to compute!
We will demonstrate this in a mo-
ment. At the time perceptrons were
invented, many people speculated
that intelligent systems could be
constructed out of perceptrons (see
Figure 8).

Since the perceptrons of Figure 7
are independent of one another,
they can be separately trained. Let
us concentrate on what a single per-
ceptron can learn to do. Consider
the pattern classification problem
shown in Figure 9. Given values for
x; and xg, we wani to train a per-
ceptron to output | if it thinks the
input belongs to the class of white
dots, and 0 if it thinks the input be-
longs to the class of black dots. We
have no explicit rule to guide us; we
must induce a rule from a set of
training instances. We will now see
how perceptrons can learn to solve
such problems.

First, it is necessary to take a close
look at what the perceptron com-
putes. Let ¥ be an input vector (x|,
xg . . . x,). Notice that the weighted
summation function g(x) and the
output function o(x) can be defined
as:

glx) = }_anm
_J1 ifgxy >0
obx) = {0 if g(x) < 0

Consider the case where we have
only two inputs (as in Figure 9).
Then:

glx) = wy + wix) + woexg

If g(x) is exactly 0, the perceptron

cannot decide whether to fire or
not. A slight change in inputs could
cause the device to go either way. If
we solve the equation g(x) = 0, we
get the equation for a line:

wy wo
X9 = ———x; — —
w2

wg

The location of the line is com-
pletely determined by the weights
wy, wy, and we. If an input vector
lies on one side of the line, the per-
ceptron will output 1; if it lies on
the other side, the perceptron will
output 0. A line that correctly sepa-
rates the training instances corre-
sponds to a perfectly functioning
perceptron. Such a line is called a
decision surface. In perceptrons with
many inputs, the decision surface
will be a hyperplane through the
multidimensional space of possible
input vectors. The problem of
learning is one of locating an ap-
propriate decision surface.

We will present a formal learning
algorithm in a moment. For now,
consider the informal rule:

If the perceptron fires when it
should not fire, make each w;
smaller by an amount propor-
tional to x;. If the perceptron
fails to fire when it should fire,
make each w; larger by a simi-
lar amount.

Suppose we want to train a three-
input perceptron to fire only when
its first input is on. If the per-
ceptron fails to fire in the presence
of an active x;, we will increase w,
(and we may increase other
weights). If the perceptron fires
incorrectly, we will end up decreas-
ing weights that are not w;. In addi-
tion, wy will find a value based on
the total number of incorrect fir-
ings versus incorrect misfirings.
Soon, w; will become large enough
to overpower wy, while wy and ws
will not be powerful enough to fire
the perceptron, even in the pres-
ence of both x¢ and xs.

Now let us return to the func-
tions g(x) and o(x). While the sign of
glx) is critical to determining
whether the perceptron will fire,
the magnitude is also important.

The absolute value of g(x) tells how
far a given input vector ¥ lies from
the decision surface. This gives us a
way of characterizing how good a
set of weights is. Let @ be the weight
vector (wy, wy . . . w,), and let X be
the subset of training instances mis-
classified by the current set of
weights. Then define the Perceptron
Criterion Function, J(@), to be the
sum of the distances of the misclas-
sified input vectors from the deci-
sion surface:

iw;x,-.

=0

= 2 [ox|

¥ex

Jj@) = 2

YeX

To create a better set of weights
than the current set, we would like
to reduce J(@). Ulumately, if all
inputs are classified correctly,
J@) = 0.

How do we go about minimizing
J@)? We can use a form of local
search known as gradient descent.”
For our current purposes, think of
J@) as defining a surface in the
space of all possible weights. Such a
surface might look like the one in
Figure 10.

In the figure, weight w, should
be part of the weight space, but is
omitted here because it is easier to
visualize ] in only three dimensions.
Now, some of the weight vectors
constitute solutions, in that a per-
ceptron with a solution vector will
classify all of its inputs correctly.
Note that there are an infinite
number of solution vectors. For any
solution vector @, we know that
J@,) = 0. Suppose we begin with a
random weight vector @ that is not
a solution vector. We want to slide
down the J surface. There is a
mathematical method for doing
this—we compute the gradient of
the function J(@). Before we derive
the gradient function, we will refor-
mulate the Perceptron Criterion
Function to remove the absolute
value sign:

% if ¥ 1s misclassified
as a negative example

—x if ¥ i1s misclassified
as a positive example

J@) =2

vex
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FIGURE 6. Perceptron with adjustable threshold impiemented

as additional weight w,.
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FIGURE 7. A perceptron with many inputs and many outputs.
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minimizing J(#). Weight w, is omitted for clarity).
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Recall that X is the set of misclassi-
fied input vectors.

Now, here is V/, the gradient of
J@) with respect to the weight
space:

% if & is misclassified
as a negative example

—x if ¥ 1s misclassified
as a positive example

V@) =

rex

The gradient is a vector that tells
us the direction to move in weight
space in order to reduce J(@). In
order to find a solution weight vec-
tor, we simply change the weights
in the direction of the gradient, re-
compute J(@) recompute the new
gradient, and iterate until J(@) = 0.
The rule for updating the weights
at time ¢ + 1 1s:

By =T+ V]

Or in expanded form:

Wiy =W +

»

veX.

x if X is misclassified
as a negative example

—x if ¥ is misclassified
as a positive example

7 is a scale factor that tells us how
far to move in the direction of the
gradient. A small n will fead to
slower learning, but a large n may
cause a move through weight space
that “overshoots” the solution vec-
tor. Taking 7 to be a constant gives
us what is usually called the “fixed-
increment perceptron learning al-
gorithm”:

Algorithm: Fixed-increment
Perceptron Learning

Given: a classification problem with
n input features (x;, xo . . . x,,) and
two output classes.

Compute: a set of weights wy, wy,
wy ... w,) that will cause a per-
ceptron to fire whenever the input
falls into the first output class.

1. Create a perceptron with n + 1
inputs and n + 1 weights, where
the extra input x, is always set to
1.

2. Inidalize the weights (wg, w; . . .
w,) to random real values.

3. Iterate through the training set,
collecting all of the examples
nusclassified by the current set of
weights.

4. If all examples are classified cor-
rectly, output the weights and
quit.

5. Otherwise, compute the vector
sum S of the misclassified input
vectors, where each vector has
the form (xg, x; . . . x,). In creat-
ing the sum, add to § a vector ¥
if ¥ is an input for which the
perceptron incorrectly fails to
fire, but add vector —x if ¥ is an
input for which the perceptron
incorrectly fires. Multiply the
sum by a scale factor 7.

6. Modify the weights (wo, w; . . .
w,) by adding the elements of
the vector § to them. Go to
step 3.

The perceptron learning algo-
rithm is a search algorithm. It be-
gins in a random initial state and
finds a solution state. The search
space is simply all of the possible
assignments of real values to the
weights of the perceptron, and the
search strategy is gradient descent.

So far, we have seen two search
methods employed by neural net-
works: gradient descent in per-
ceptrons and parallel relaxation in
Hopfield networks. It is important
to understand the relation between
the two. Parallel relaxation is a
problem-solving strategy, analo-
gous to state space search in sym-
bolic Al. Gradient descent is a
learning strategy, analogous to in-
ductive techniques in symbolic AL
In both symbolic and connectionist
Al, learning is viewed as a type of
problem solving, and this is why
search is useful in learning. But the
ultimate goal of learning is to get a
system into a position where it can
solve problems better. Do not con-
fuse learning algorithms with oth-
ers.

The Perceptron Convergence Theo-
rem, due to Rosenblatt [24], guaran-
tees that the perceptron will find a
solution state (i.e., it will learn to

classify any linearly separable set of
inputs). Figure 11 shows a per-
ceptron learning to classify the in-
stances of Figure 9. Remember that
every set of weights specifies some
decision surface—in this case some
two-dimensional line.

The introduction of perceptrons
in the late 1950s created a great
deal of excitement in the research
community. Here was a device that
strongly resembled a neuron and
for which well-defined learning
algorithms were available. There
was much speculation about how
intelligent systems could be con-
structed from perceptron building
blocks. The book, Perceptrons, [20]
put an end to such speculation by
analyzing the computational capa-
bilities of the devices. The authors,
Minsky and Papert, noticed that
while the Convergence Theorem
guaranteed correct classification of
linearly separable data, most prob-
lems do not supply such nice data.
Indeed, the perceptron is incapable
of learning to solve some very sim-
ple problems. One example given
in the book is the exclusive-or
(XOR) problem: Given two binary
inputs, output 1 if exactly one of the
inputs is on, and output 0 other-
wise. We can view XOR as a pat-
tern-classification problem in which
there are four patterns and two
possible outputs (see Figure 12).

The perceptron cannot learn a
linear decision surface to separate
these different outputs, because no
such decision surface exists. No single
line can separate the “1” outputs
from the “0” outputs. Minsky and
Papert gave a number of problems
with this property: telling whether
a line drawing is connected, sepa-
rating figure from ground in a pic-
ture, etc. Notice that the deficiency
here is not in the perceptron learn-
ing algorithm, but in the way the
perceptron represents knowledge.

If we could draw an elliptical
decision surface, we could encircle
the two “1” outputs in the XOR
space. However, perceptrons are
incapable of modeling such sur-
faces. Another idea is to employ two
separate line-drawing stages. We

November 1990/Vol.33, No.11/COMMUNICATIONS OF THE ACM



could draw one line to isolate the
point (x; = 1, xo = 1) and then an-
other line o divide the remaining
three points into two categories.
Using this idea, we can construct a
multilayer perceptron (a series of
perceptrons) to solve the problem.
Such a device is shown in Figure 13.

Note how the output of the first
perceptron serves as one of the in-
puts to the second perceptron, with
a large, negatively weighted con-
nection. If the first perceptron secs
the input (x; = [, xy = 1) it will send
a massive inhibitory pulse to the
sccond perceptron, causing that
unit to output 0 regardless of its
other inputs. If either of inputs is 0,
the second perceptron gets no inhi-
bition from the first perceptron,
and it outputs 1 if cither of the in-
puts s 1.

The multilayer per-
ceptrons, then, solves our knowl-
edge  representation  problem.
However, it introduces a serious
learning problem: the Convergence
Theorem does not extend to multi-
layer percepurons. The perceptron
lcarning algorithm can correctly
adjust weights between inputs and
outputs, but it adjust
weights  between  perceptrons.  In
Figure 13, the inhibitory weight
“=9.0"  was  hand-coded, not
learned. At the time Percepirons was
published, no one knew how multi-
layer perceptrons could be made to
learn. In fact, Minsky and Papert
speculated:

The perceptron . . . has many

features that atract attention:

its  lincarity, its  intriguing
learning theorem . . . there is
no reason to supposce that any
of these virtues carry over to
the  many-layered  version.

Nevertheless, we consider it to

be an important  rescarch

problem to clucidate (or re-
jeet) our intuitive judgement
that the extension is sterile.

Despite the identification of this
important rescarch problem, actual
rescarch in perceptron  learning
came to a halt in the 1970s. The
field saw little interest until the
F980s, when several learning pro-

use of

cannot

X2

k=10
k=100
k=300
k=635
|
X
k L) w1 Wy
10 041 -0.17 0.14
100 022 -0.14 0.11
300 -0.10 -0.08 0.07
635 -049 -0.10 0.14

FIGURE 11. A perceptron learning to solve a classification problem. k is the number of
passes through the training data (i.e., the number of iterations of steps 3 through 6 of the
fixed-increment perceptron learning algorithm).
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FIGURE 12. A classification problem, XOR, that is nof linearly separable.

FIGURE 13. A multilayer perceptron that solves the XOR problem.
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cedures  for multilayer  per-
ceptrons—also  called  muliilayer
networks—were proposed. The

next few sections are devoted to
such learning procedures.

Backpropagation Networks

As suggested by Figure 8 and the
Perceptrons critique, the ability to
train multilayer networks is an im-

portant step in the direction of
building intelligent machines out of

neuron-like components. Let us
reflect for a moment on why this is
so. Our goal is to take a relauvely
amorphous mass of neuron-like
elements and teach it to perform
uscful tasks. We would like it to be
fast and resistant to damage. We
would like it to generalize from the
mputs it sees. We would like to
build these neural masses on a very
large scale, and we would like them
to be able to learn efficiently. Per-
ceptrons got us part of the way
there, but we say that they were too
weak computationally. So we turn
to more complex, multilayer net-
works.

What can a multilayer network
compute? The simple answer is:
anything! Given a set of inputs, we
can use summation/threshold units
as simple AND, OR. and NOT
gates by appropriately setting the
threshold and connection weights.
We can build any arbitrary combi-
national circuit out of such units. In
fact, if we are allowed to use feed-
back loops, we can build a general-
purpose computer with them.

The major problem is learning.
The knowledge representation sys-
tem employed by neural nets is
quite opaque: they must learn their
own representations because pro-
gramming them by hand is impossi-
ble. Perceptrons had the nice prop-
erty that whatever they could
compute, they could learn to com-
pute. Does this property extend to
multilayer networks? The answer is
yes, sort of. Backpropagation is a
step in that direction.

It will be useful to deal first with
a subclass of multlayer networks,
namely fully connected, layered,

feedforward networks. A sample of

such a network is shown in Figure
14. This network has three layers,
although it is possible and some-
times useful to have more. Activa-
tions flow from the input layer
through a hidden layer, then on to
the output layer. Each unit in one
layer is connected in the forward
direction to every unit in the next
layer. As usual, the knowledge of
the network is encoded in the
weights on connections between
units. In contrast to the parallel re-
laxation method used by Hopfield
nets, backpropagation networks
perform a simpler computation.
Because activations flow in only one
direction, there is no need for an
iterative relaxation process. The
activation levels of the units in the
output layer determine the output
of the network.

The existence of hidden units
allows the network to develop com-
plex feature detectors, or ternal
representations. Figure 15 shows the
application of a three-layer network
to the problem of recognizing dig-
its. The two-dimensional grid con-
taining the numeral “7” forms the
input layer. A single hidden unit
might be strongly activated by a
horizontal line in the input, or per-
haps a diagonal. The important

thing to note is that the behavior of

these hidden units is automatically
learned, not preprogrammed. In
Figure 15, the input grid appears to
be laid out in two dimensions, but
the fully connected network is una-
ware of this 2-D structure. Because
this structure can be important,
many networks permit their hidden
units to maintain only local connec-
tions to the input layer (e.g., a dif-
ferent 4-by-4 sub-grid for each hid-
den unit).

The hope in attacking problems
like handwritten character recogni-
tion is that the neural network will
not only learn to classify the inputs
it is trained on, but will generalize
and be able to classify inputs that it
has not yet seen. We will return to
generalization in the next section.

It seems reasonable at this point
to express the following: “All neu-
ral nets seem to be able to do is clas-

sification. Hard Al problems like
planning, natural language pars-
ing, and theorem proving are not
simply classification tasks, so how
do connectionist models address
these problems?” Most of the prob-
lems we will see in this article are
indeed classification problems, be-
cause these are the problems that
neural networks are best suited to
handle at present. A major limita-
tion of current network formalisms
is their way of dealing with phe-
nomena that involve time. This lim-
itation is lifted to some degree in
work on recurrent networks (e.g.
[14]), but for now, we will concen-
trate on classification problems.

Let us now return to back-
propagation networks. The unit in
a backpropagation network re-
quires a slightly different activation
function from the perceptron. Both
functions are shown in Figure 16. A
backpropagation unit still sums up
its weighted inputs, but unlike the
perceptron, it produces a real value
between 0 and | as output, based
on a sigmoid (or S-shaped) func-
tion. Let sum be the weighted sum
of the inputs to a unit. The equa-
tion for the unit’s output is given
by:

1
thut = ——————
outpu 1 + p-sem
Like a perceptron, a back-
propagation  network  typically

starts out with a random set of
weights. The network adjusts its
weights each time it sees an input/
output pair. Each pair requires two
stages: a forward pass and a back-
ward pass. The forward pass in-
volves presenting a sample input to
the network and letting activations
flow until they reach the output
layer. During the backward pass,
the network’s actual output is com-
pared to the target output, and
error estimates are computed for
the output units. The weights con-
nected to the output units can be
adjusted in order to reduce those
errors. We can then use the error
estimates of the output units to de-
rive error estimates for the units in
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the hidden layers. Finally, errors
are propagated back to the connec-
tions stemming from the input
units.

Unlike the perceptron learning
algorithm of the last section, the
backpropagation algorithm usually
updates its weights incrementally,
after seeing each input/output pair.
After it has seen all of the input/
output pairs (and adjusted its
weights that many times), we say
that one epoch has been completed.
Training a backpropagation net-
work usually requires many epochs.

Refer back to Figure 14 for the
basic structure on which the follow-
ing algorithm is based.

Algorithm: Buckpropagotion
Given: A set of input/output vector
pairs.

Compute: A set of weights for a
three-layer network that maps in-
puts onto corresponding outputs.

1. Let A be the number of units in
the input layer, as determined
by the length of the training
input vectors. Let C be the
number of units in the output
layer. Now choose B, the num-
ber of units in the hidden
layer.:‘ As shown in Figure 14,
the input and hidden layers
each have an extra unit used
tor thresholding: theretore,
the units in these layers will
sometimes be indexed by the
ranges (0. . . Ayand (0. .. B).
We denote the activation levels
of the units in the input layers
by x;, in the hidden layer by #;,
and in the output layer by o,
Weights connecting the input
layer to the hidden layer are
denoted by wly, where sub-
script / indexes the input units,
and j indexes the hidden units.
Likewise, weights connecting

2Gradient descent is the same thing as Aifl
climbing. modulo a change in sign. Hill climb-
ing is one of the weak methods often used in
symbolic Al

*Successtul large-scale networks have used
input-hidden-ouput topologies like 960-9-45
[23], 203-80-26 [28], and 459-24-24-1 [29]. A
larger hidden laver results in a more powerful
network, but oo much power may be unde-
sirable. as we will see Luer.

FIGURE 14. A multilayer network. In this diagram x, &, and o, represent unit activation
levels of input, hidden, and output units. Weights on connections between the input and hidden
layers are denoted here by w 4, while weights on connections between the hidden and output
layers are denoted by & 2,

FIGURE 15. Using a multilayer network to learn to classify handwritten digits. The hidden
units learn to recognize important features in the input.

FIGURE 16. The stepwise activation function of the perceptron {left), and the sigmoid
activation function of the backpropagation unit (right). The sigmoid function is continuous and
differentiable, features required by the backpropagation algorithm.
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the hidden layer to the output
layer arc denoted by w2 with
indexing to hidden units and
indexing output units.

2. Initialize the weights in the net-
work. Each weight should be
set randomly to number be-
tween —0.1 and 0.1.

wl;, = random(—0.1,0.1)
forall:=0...A,j=1...8B

w2, = random(—0.1,0.1)
foralli=0...8,;=1...C

3. Initialize the activations of the
thresholding  units.  These
should never change their val-
ues.

Xy = 1.0
1.0

ho

4. Choose an input/output pair.
Suppose the input vector is x,
and the target output vector is
¥ Assign activation levels to the
input units.

5. Propagate the activations from
the units in the input layer to
the units in the hidden layer,
using the activation function of
Figure 16:

1
h =

/ 1+ (,“jn wlipne

forallj=1...8B

Note that / ranges from 0 to A.
wly; 1s the thresholding weight
for hidden unit j (its propensity
to fire irrespective of s in-
puts). xq is always 1.0.

6. Propagate the activations from
the units in the hidden layer to
the units in the output layer.

1
o= I+ (,—?,[fn w2,hy

forallj=1...C

Again, the thresholding weight
w2y, for output unit j plays a
role in the weighted summa-
tion. hy is always 1.0.

7. Compute the errors' of the

units in the output layer, de-
noted 82;. Errors are based on
the network’s actual output (o))
and the target output (y)).

82, = o/(1 = 0)(yj ~ o))
forallj=1...C

8. Compute the errors of the
units in the hidden layer, de-
noted 81;.

.
81, = (1 = h) 2 62; + w2

i=1

forallj=1...8B

9. Adjust the weights between the
hidden layer and output layer.?
The learning rate is denoted 7;
its function is the same as in per-
ceptron learning. A reasonable
value of 7 is 0.35.

A'(UQ,‘/‘:"]‘(SQI”II,'
foralli=0...8,j=1...C

10. Adjust the weights between the
input layer and the hidden
layer.

Azul,-,-=n-51,--x,»
foralli=0...A,j=1...8B

11. Go to step 4 and repeat. When
all of the nput/output pairs
have been presented to the net-
work, one epoch has been com-
pleted. Repeat steps 4 to 10 for
as many epochs as desired.

The

algorithm generalizes

"T'he error formula is related 1o the derivative
of the activation function. The mathematical
derivation behind the backpropagation learn-
ing algorithm is bevond the scope of this arti-
cle.

*Again. we omit the details of the derivation.
The basic idea is that each hidden unit tries to
minimize the crrors of output units to which it
connects.

%A network with one hidden layer can com-
pute any function that a network with many
hidden layers can compute: with an exponen-
tial number of hidden units, one unit could be
assigned 1o every possible input  pattern.
However, learning is sometimes faster with
multiple hidden lavers, especially if the input
is highly noulincar (i.e.. hard 1o separate with
a series of straight lines).

straightforwardly to networks of
more than three layers.® For each
extra hidden layer, insert a forward
propagation step between steps 6
and 7; an error computation step
between steps 8 and 9: and a weight
adjustment step between steps 10
and 11. Error computation for hid-
den units should use the equation
in step 8, but with 7 ranging over
the units in the next layer, not nec-
essarily the output layer.

The speed of learning can be in-
creascd by modifying the weight
modification steps 9 and 10 to in-
clude a momentum term «. The
weight update formulas become:

Aw2i{t + 1) = 7 82; - h; + alw2{1)
Aurl,-]-([ +1)=7n: 31,‘ tx; t C‘Awl//’(l)

where /iy, x;. 81; and 82; are mea-
sured at time ¢+ 1. Awi(t) is the
change the weight saw during the
previous forward-backward pass. If
a is set to 0.9 or so, learning speed
is improved.’

Recall that the activadon func-
tion has a sigmoid shape. Since infi-
nite weights would be required for
the actual outputs of the network to
reach 0.0 and 1.0, binary target
outputs (the y/’s of steps 4 and 7) are
usually given as 0.1 and 0.9 instead.
The sigmoid is required by back-
propagation because the derivation
of the weight update rule requires
that the activation function be both
continuous and differentiable.

The derivation of the weight
update rule is more complex than
the derivation of the fixed-incre-
ment update rule for perceptrons,
but the idea is much the same.
There is an error function that de-
fines a surface over weight space,
and the weights are modified in the
direction of the gradient of the sur-
face. See [25-27] for details. Inter-
estingly, the error surface for mul-
tilayer nets is more complex than

“Empirically. best results have come from let-
ting a be zero for the first few training passes.
then increasing it to 0.9 for the rest of train-
ing. This process first gives the algorithm
some time o find a good general direction,
then moves it in that direction with some
extra speed.
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the error surface for perceptrons.
One notable difference is the exis-
tence of local minima. Recall the
bowl-shaped space we used to ex-
plain perceptron learning (Figure
10). As we modified weights, we
moved in the direction of the bot-
tom of the bowl; eventually, we
reached it. A backpropagation net-
work, however, may slide down the
error surface into a set of weights
that does not solve the problem it is

being trained on. I that set of

weights 1s at a local minimum, the
network will never reach the opti-
mal set of weights. Thus, we have
no analogue of the Perceptron
Convergence Theorem for back-
propagation networks.

There are several methods of

combating the problem of local
minima. 'The momentum factor e,
which tends to keep the weight
changes moving in the same direc-
tion, allows the algorithm to skip
over small minima. Simulated an-
nealing, to be discussed later, is also
useful. Finally, adjusting the shape
of a unit’s activation function can
have an effect on the network’s sus-
ceptibility to local minima.
Fortunately,  backpropagation
networks rarely slip into local min-
ima. It turns out that, especially in
larger networks, the high-dimen-
sional weight space provides plenty
of degrees of freedom for the algo-
rithm. The lack of a convergence
theorem is not a problem in prac-
tice. However, this pleasant feature
of backpropagation was not discov-
ered until receutly, when digital
computers became fast enough to
support large-scale simulations of
neural  networks. The  back-
propagation algorithm was actually
derived independently by a num-
ber of researchers in the past, but it
was discarded as many times be-
cause of the potential problems
with local minima. In the days be-
fore fast digital computers, re-
searchers could only judge their
idea by proving theorems about
them, and they had no idea that
local minima would turn out to be
rare in practice. The modern form
of backpropagation is often cred-

Performance —»

training
set

testing
set

. Training Time —*

FIGURE 17. A common generalization effect in neural network learning.
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ited to [16, 22, 25, 31].

Backpropagation networks are
not without real problems, how-
ever—the most serious being the
slow speed of learning. Even simple
tasks require extensive training
periods. The XOR problem, for
example, involves only five units
and nine weights, but it can require
many passes through the four
training cases before the weights
converge, especially if the learning
parameters are not carefully tuned.
Also, simple backpropagation does
not scale up very well. The number
of training examples required is
superlinear in the size of the net-
work.

Since backpropagation is inher-
ently a parallel, distributed algo-
rithm, the idea of improving speed
by building special-purpose back-
propagation hardware is attractive.
However, fast new variations of
backpropagation and other learn-
ing algorithms appear frequently in
the literature, e.g., [7]. By the time
an algorithm is transformed into
hardware and embedded in a com-
puter system, the algorithm is likely
to be obsolete.

CGeneralization

If all possible inputs and outputs
are shown to a backpropagation
network, it will (probably, eventu-
ally) find a set of weights that maps
the inputs onto the outputs. For
many Al problems, however, it is
impossible to give all possible in-
puts. Consider face recognition and

COMMUNICATIONS OF THE ACM/November 1990/Vol.33, No.11

character recognition. There are an
infinite number of orientations and
expressions to a face, and an infi-
nite number of fonts and sizes for a
character, yet humans learn to clas-
sify these objects easily from only a
few examples. We would hope that
our networks would do the same.
And in fact, backpropagation shows
promise as a generalization mecha-
nism. If we work in a domain where
similar inputs get mapped onto
similar outputs, backpropagation
will interpolate when given inputs it
has never seen before.

There are some pitfalls, how-
ever. Figure 17 shows the common
generalization effect during a long
training period. During the first
part of the training, performance
on the training set improves as the
network adjusts its weight through
backpropagation. Performance on
the test set (examples that the net-
work is not allowed to learn on) also
improves, although it is never quite
as good as the training set. After a
while. network  performance
reaches a plateau as the weights
shift around, looking for a path to
further improvement. Ultimately,
such a path is found, and perfor-
mance on the training set improves
again. But performance on the test
set gets worse. Why? The network
has begun to memorize the individ-
ual input/output pairs rather than
settling for weights that genervally
describe the mapping for all cases.

With thousands of real-valued
weights at its disposal, back-
69
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propagation is theoretically capable
of storing entire training sets; with
enough hidden units, the algorithm
could learn to assign a hidden unit
to every distinct input pattern in
the training set. It is a testament to
the power of backpropagation that
this actually happens in practice.

Of course it is undesirable for
backpropagation to have that much
power. There are several ways to
prevent it from resorting to a table-
lookup scheme. One way is to stop
training when a plateau has been
reached, on the assumption that
any other improvement will come
through cheating. Another way is
to add deliberately small amounts
of noise to the training inputs. The
noise should be enough to prevent
memorization, but it should not be
great enough to confuse the classi-
fier. A third way to help generaliza-
tion 1s to reduce the number of hid-
den units in the network, creating a
bottleneck between the input and
output lavers. Confronted with a
bottleneck, the network will be
forced 1o come up with compact
internal representations of its in-
puts.

Finally, there is the issue of ex-
ceptions. In many domains, there
are general rules, but also excep-
ttons to the rules. For example, we
can generally make the past tense
of an English verb by adding “-ed”
to 1, but this is not true of verbs like
“sing,” “think,” and “eat.” When we
show a network many present/past
tense pairs, we would like it to gen-
eralize in spite of the exceptions—
but not to generalize so far that the
exceptions are lost. Backpropaga-
tion performs fairly well in this re-
gard, as do simple perceptrons, as
reported in [26].

Boltzmann Machines
A Boltzmann machine is a variation
on the idea of a Hopfield network.
Recall that pairs of units in a Hop-
field net are connected by symmet-
ric weights. Units update their
states asynchronously by looking at
their local connections to other
units.

In addition to serving as content-

70

addressable memories, Hopfield

networks can solve a wide variety of

constraint  satisfaction  problems.
Each unit can be viewed as a hy-
pothesis. Mutually supporting hy-
potheses are connected with posi-
tive weights, and incompatible
hypotheses are connected with neg-
ative weights.

A major limitation of Hopfield
networks is that they settle into local
minima. In constraint satisfaction
tasks we need to find the globally
optimal state of the network. This
state corresponds to an interpreta-
tion that satisfies as many interact-
ing constraints as possible. Unfor-
tunately, Hopfield networks cannot
find global solutions because they
settle into stable states via a com-
pletely distributed algorithm. If a
network reaches a stable state like
state A in Figure 4, that means no
single unit is willing to change its
state in order to move uphill; thus
the network will never reach glo-
bally optimal state B. If several
units decided to change state simul-
taneously, the network might be
able to scale the hill and slip into
state B. We need a way to push net-
works into globally optimal states
while maintaining our distributed
approach.

Boltzmann machines solve this
problem by employing a search
technique called simulated annealing
[15]. Space himitations preclude a
tull discussion of Boltzmann ma-
chines; for details, sce [11]. Briefly,
units in a Boltzmann machine up-
date their individual binary states
using stochastic rather than deter-
ministic rules. At first, units switch
on and off randomly, but as the
network “cools down,” they ap-

proximate a Hoptield network. If

the cooling procedure is slow
enough, a Boltzmann machine is
guaranteed to avoid local minima.
As in backpropagation networks,
the weights of a Boltzmann ma-
chine are usually acquired via a
learning algorithm.

Unsupervised Learning
Some networks, e.g. [3], do not re-
ceive target output values from a

teacher, but instead only receive a
real-valued signal indicating pun-
ishiment or reward. These networks
adjust their behavior to avoid fu-
ture punishment.

What if a neural network is given
no feedback for its outputs, not
even a reinforcement signalz Can
the network learn anything usetul?
The unintuitive answer is: yes. This
form of learning is called unsuper-
vised learning because no teacher is
required. Given a set of input data,
the network is allowed 10 play with
it to try to discover regularities and
relationships between the different
parts of the input.

Learning is often made possible
through some notion of which fea-
tures in the input set are important.
But often we do not know in ad-
vance which features are impor-
tant, and asking a learning system
to deal with raw input data can be
computationally expensive. Unsu-
pervised learning can be used as a
“feature discovery” module that
precedes supervised learning.

Consider the data in Figure 18.
The group of 10 animals, each de-
scribed by its own set of features,
breaks down naturally into three
groups: mammals, reptiles, and
birds. We would like to build a net-
work that can learn which group a
particular animal belongs to, and to
generalize so that it can identify
ammals it has not yet seen. We can
easily accomplish this with a six-
input, three-output backpropaga-
tion network. We simply present
the network with an input, observe
its output, and update its weights
based on the errors it makes. Since
without a teacher, however, the
ervor cannot be computed, we must
seek other methods.

Our first problem is to ensure
that only one of the three output
units becomes active for any given
input. One solution to this problem
is to let the network settle, find the
output unit with the highest level of
activation, set that unit to 1, and set
all other output units to 0. In other
words, the output unit with the
highest activation is the only one we
consider to be active. A more
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neural-like solution is to have the
output units fight among them-
selves for control of an input vec-
tor. The scheme is shown in Figure
19. The input units are directly
connected to the output units, as in
the perceptron, but the output
units are also connected to each
other, via prewired negative, or
inhibitory, connections. The output
unit with the most activation along
its input lines initially will most
strongly dampen its competitors.
As a result, the competitors will
become weaker, losing their power
of inhibition over the stronger out-
put unit. The stronger unit then
becomes even stronger, and its in-
hibiting effect on the other output
units becomes overwhelming. Soon
the other output units are all com-
pletely inactive. This type of mutual
inhibition is called winner-take-all
behavior. One popular unsuper-
vised learning scheme based on this
behavior is known as competitive
learning.

In competitive learning, output
units fight for control over portions
of the input space. A simple com-
petitive learning algorithm is the
following:

1. Present an input vector.

2. Calculate the initial activation
for each output unit.

3. Let the output units fight until
only one is active.

4. Increase the weights on connec-
tions between the active output
unit and actrve input units. This
makes it more likely that the out-
put unit will be active next time
the pattern is repeated.

A problem with this algorithm is
that one output unit may learn to
be active all the time—it may claim
all of the space of inputs for itself.
For example, if all the weights on a
unit’s input lines are large, it will
tend to bully the other output units
into submission. Learning will only
further increase those weights.

The solution, originally due to
Rosenblatt (and described in [27]),
is to ration the weights. The sum of
the weights on a unit’s input lines is
limited to I. Increasing the weight
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Dog 1 0 0 0 0 0
Cat 1 0 0 0 0 0
Bat 1 0 0 1 0 0
Whale 1 0 0 0 1 0
Canary 0 0 1 1 0 1
Robin 0 0 1 1 0 1
Ostrich 0 0 1 1 0 1
Snake 0 1 0 0 0 1
Lizard 0 1 0 0 0 1
Alligator 0 1 0 0 1 1

FIGURE 18. Data for unsupervised learning.

output
units

input

units

has-hair? has-feathers? lives in water?

has-scales? flies? lays eggs?

FIGURE 19. A competitive learning network. input units are connected directly to output
units. Through the use of inhibitory connections, output units fight for control of input.

of one connection requires that we
decrease the weight of some other
connection. Here is the learning
algorithm:

Algorithm: Competitive
Learning

Given: A network consisting of » bi-
nary-valued input units directly
connected to any number of output
units.

Produce: A set of weights such that
the output unit become active ac-
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cording to some natural division of
the inputs.

1. Present an input vector, denoted
(X1, x9 . .. x,).

2. Calculate the initial activation
for each output unit by comput-
ing a weighted sum of its in-
puts.®

3. Let the output units fight until
only one is active.”

4. Adjust the weights on the input

7
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lines that lead to the single active
output unit:

A ol

)= e — s
R T
forallj=1...n

where w; is the weight on the
connection from input unit j to
the active output unit, x; is the
value of the jth input bit, m is the
number of input units that are
active in the input vector that
was chosen in step (1), and 7 is
the learning rate (some small
constant). It can be shown that if
the weights on the connections
feeding into an output unit total
1 before the weight change, they
will sill total I afterwards.

5. Repeat steps 1-4 for all input
patterns, for many cpochs.

The weight update rule in step 4
makes the output unit more prone
10 fire when it sees the same input
again. If the same input is pre-
sented over and over, the output
unit  will eventually adjust its
weights for maximum activation on
that input. Because input vectors
arrive in a mixed fashion, however,
output units never scttle on a per-
fect set of weights. The hope is that

cach will find a natural group of

input vectors and gravitate toward
it, that is, toward high activations
when presented with those inputs.
The algorithm halts when the
weight changes become very small.

The competitive learning algo-
rithm works well in many cases, but
it has some problems. Sometimes,
one output unit will always win,
despite the existence of more than
one cluster of input vectors. If two
clusters are close together, one out-
put unit may learn weights that give

¥I'here is no reason to pass the weighted sum
through a sigmoid function, as we did with
backpropagation, because we only calculate
activation levels for the purpose of singling
out the most highly activated output unit.

YAs mentioned earlier, any method for deter-
mining the most highly activated output unit
is sufficient. Simulators written in a serial pro-
gramming language may dispense with the
neural circuitry and simply compare activa-
tions levels to find the maximum.
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it a high level of activation when
presented with an input from either
cluster. In other words, it may oscil-
late between the two clusters. Nor-
mally, another output unit will win
occastonally, and move to claim one
of the two clusters. However, if the
other output units are completely
unexcitable by the input vectors,
they may never win the competi-
tion. One solution, called leaky
learning, is to change the weights
belonging to relatively inactive out-
put units as well as the most active
one. The weight update rule for
losing output units is the same as in
the algorithm above, except that
they move their weights with a
much smaller n (learning rate). An
alternative solution is to adjust the
sensitivity  of  an  output  unit
through the use of a bias, or adjust-
able threshold. Recall that this bias
mechanism  was  used in  per-
ceptrons, and corresponded to the
propensity of a unit to fire irrespec-
tive of its inputs. Output units that
scldom win in the competitive
lcarning process can be given larger
biascs. In cffect, they are given con-
trol over a larger portion of the
input space. In this way, units that
consistently lose are eventually
given a chance to win and adjust
their weights in the direction of a
particular cluster.

Applications of Neural
Networks

The study of neural networks has
vielded a number of techniques
that have been used to approach
difticult problems with some suc-
cess. For example, Figure 20 shows
how a backpropagation network
can be trained to discriminate
among different  vowel sounds,
given a pair of frequencics taken
from a speech waveform. A good
deal of connectionist rescarch is

also dirccted toward the problem of

machine viston. Neural networks
provide a framework for integrat-
ing the constraint
sources necessary for vision, in a
highly parallel fashion [2]. Connec-
tionist svstems have been applied in
many other arcas, including speech

numerous

generation  [28],  combinatorial
problems [13]. game playing [29],
signal processing [10], image com-
pression [5], and road following
[23].

Since all of these systems rely
heavily on automatic learning, we
can think of them as exercises in
“extensional  programming” (3]
There exists some complex rela-
tionship between input and output,
and we program that relationship
into the computer by showing its
examples from the real world. Con-
trast this  with traditional,
tensional programming.,” in which
we write rules or specialized algo-
rithms without reference to any
particular examples. In the former
case, we hope that the network gen-
cralizes to handle new cases cor-
rectly: in the latter case, we hope
that the algorithm is general
cnough to handle whatever cases it
receives. Extensional programming
is a powerful technique because it
drastically cuts down on knowledge
acquisition time, a major bottleneck
in the construction of” Al systems.
However, current learning meth-
ods arc not adequate for the exten-
sional programming of very com-
plex tasks, such as the translation of
English sentences into Japanese.

“In-

Connectionist Al and
Symbolic Al

The connectionist approach to Al is
quite different from the waditional
symbolic — approach.  Both  ap-
proaches are joined at the problem,
as both try 1o address difficult is-
sues in search, knowledge repre-
sentation, and learning. Let us list
some of the methods they employ:

Connectionist

e Scarch—Parallel refaxation.

e Knowledge Representation—
[arge number of real-valued
connection  strengths  (Struc-
tures olten stored as distrib-
uted patterns of activation).

e [carning—Backpropagation,
Boltzmann  machines, rein-
forcement learning, unsuper-
vised learning.

Symbolic
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¢ Search—State space traversal.
* Knowledge Representation—
Predicate logic, semantic net-
works, frames, scripts.
® [carning—Macro-operators,
spaces, explanation-
based learning, discovery.
The approaches have different
strengths and - weaknesses.  One
major allure of connectionist sys-
tems is that they employ knowledge
representations that seem to be
more flearnable than their symbolic
counterparts. Nearly all connec-
tionist systems have a strong learn-
ing component. However, neural
network learning algorithms usu-
ally involve a large number of train-
ing examples and long waining
periods, compared to their sym-
bolic cousins. Also, after a network
has lcarned to perform a difficult
task, its knowledge is usually quite

version

opaque—an impenctrable mass of

connection  weights.  Getting  the
network to explain its reasoning,
then, 1s difticult. Of course, this
may not be a bad thing. Humans,
for example, appear to have little
access 1o the procedures they use
for many tasks like speech recogni-
tion and vision. It is no accident
that the most promising uses for
neural networks are in these areas
of low-level perception.

It is difficult 1o see how connec-
tionist systems will tackle difficult
problems that symbolic, state-space
scarch addresses (e.g., chess, the-
orem-proving, and planning). Par-
allel relaxation scarch, however,
does have some advantages over
symbolic search. First of all, it maps
naturally onto highly parallel hard-
ware. When such hardware be-
comes widely available, parallel re-
laxation methods will be extremely
cfficient. More importantly, paral-
lel relaxation search may prove
very efficient because it can make
use of states that have no analogues
in symbolic search. 1f we freeze a
network while it is still settling, we
may not be able to make sense out
of the pattern of activity, but even-
tually, a consistent solution state
falls out of the relaxation process.
In contrast, a symbolic system can

OUTPUT
(One for Each of Ten Vowels)

HOD WHOD

HAD HEED

INPUT
(First and Second Formants)

DECISION REGIONS

F2 (Hz)

0 500
F1 (Hz)

1000 1400

FIGURE 20. A network that learns to distinguish vowel sounds (adapted from [17]).
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only expand new search nodes that
correspond to valid, possible states
of the world.

A good deal of connectionist re-
search concerns itself” with model-
ing human mental processes. Neu-
ral networks seem to display many
psychologically  and  biologically
plausible features such as content-
addressable memory, fault toler-
ance, distributed representations,
automatic generalization. Can we
integrate these desirable properties
into symbolic Al systems? Cer-
tainly, high-level theories of cogni-
tion can incorporate such features
as new psvchological primitives.
Practically speaking, we may want
to use connectionist architectures
tor low-level tasks such as vision,
specch recognition, and memory,

COMMUNICATIONS OF THE ACM/Noveniber 1990/Vol.33, No.ll

feeding results front these modules
into symbolic Al programs. An-
other idea is o take a symbolic no-
tion, and implement it in a connec-
tionist framework. A connectionist
production system is described in
[30] and a connectionist semantic
network 1s described in [6]. Ulu-
mately, connectionists would like to
see symbolic structures emerge nat-
urally from complex interactions
among simple units, in the same
way that wetness emerges from the
combination of hydrogen and oxy-
gen, although itis an intrinsic prop-
erty of neither.

Most of the promising advan-
tages of connectionist systems de-
scribed in this article are just that:
promising. A great deal of work
remains to be done 1o turn these
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promises into results. Only time will
tell how influential connectionist

models will be in the evolution of

Al rescarch. In any case, connec-
tionists can at least point to the
brain’s existence as proof that neu-
ral networks, in some form,are ca-
pable of exhibiting intelligent be-
havior.
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