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Abstract

Connectionist and symbolic Al techniques
have different strengths and weaknesses.

Connectionist representations are easily
leamed, but are often impenetrable. Sym-

bolic systems, on the other hand, are able to
explain their behavior to humans by report-
ing chains of reasoning. There have been
several proposals recently for combining
these approaches. This paper presents a
radical proposal. For a given task, we build
two 1ndependent modules, a reasoner and
a rationalizer. The reasoner uses neural or
statistical leaming techniques to achieve
the highest possible performance on the
task. The rationalizer’s job is to produce
symbolic explanations of whatever deci-
sions the reasoner might make, without
recourse to the actual decision procedure.
We describe how to combine these mod-
ules, and we present some psychological
and engineering motivations for this ap-
proach. Because the reasoner and the ra-
tionalizer perform fundamentally different
tasks, they require different learning strate-
gies. We characterize the types of domains

for which this approach 1s appropriate and
present two sample rationalizers.

Key words: Explanation, rationalization, neural
networks, hybrid systems.

1 Introduction

Connectionist techniques for representation and
leaming have been steadily gaining adherents, and
now outperform other techniques on many real-
world tasks. One advantage of connectionist repre-

sentations is that they seem to be more learnable than
their symbolic counterparts. Algorithms like back-
propagation (Rumelhart et al., 1986) leam input-
output mappings from examples and yield good
generalization performance. The downside is that
learning is usually very slow, and more importantly,
the result 1s an impenetrable mass of connection
weights. It 1s often impossible to state concisely
how a particular neural network arrives at its con-
clusions. Similar strengths and weaknesses appear
in other kinds of statistical modeling.

On the other hand, symbolic reasoning techniques
are very good at producing explanations of how 1n-
put data 1s mapped onto output. One of the first ex-
amples of an explanation program was TEIRESIAS
(Davis, 1977), which answered questions about the
behavior of the MYCIN expert system (Shortliffe,

1976). It could explain its final and intermediate
conclusions by backchaining on the MY CIN rules it
employed, and it could explain its requests for data
by displaying the rules it was trying to match. More
recent work on explanation includes SALT (Marcus
and McDermott, 1989).

There have been numerous proposals for hybrid ar-
chitectures. Fu (1991) gives an algorithm for ex-
tracting symbolic rules from a connectionist net-
work after leamning. This approach is worth pursu-
ing for small networks, but we believe it will prove
unwieldy for large networks whose representations
are highly distributed, 1.e., those in which EVEry pro-
cessing element participates in every decision. An-
other hybrid approach is to initialize 3 system with
roughly correct symbolic information. then fine-
tune the system with connectionist leaming. This
has been done in both robotic manipulation (Han-
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Figure 1: Automated Rationalization. The reasoner is
built for performance, -ufhzle the rationalizer is built for
coverage and believability.

still an uninterpretable mass of connection weights.

Despite these drawbacks, there are often no alterna-

tives that yield equally high task performance. As
Hinton (1990) points out:

If . .. the large set of weights performs con-
sistently better than an altemative system

that can explain its reasoning, it might be
better to settle for the system that works
best.

This paper addresses the problem of combining the
advantages of subsymbolic and symbolic reasoning
methods, in order to yield high-performance leamn-
Ing systems that can provide explanations for their
decisions. The rest of this paper is organized as
follows. The next section presents a system for au-
tomated rationalization and motivations for it. Sec-
tion 3 gives an example of a reasoner and rationalizer
for a simple domain. Section 4 discusses the merits
of our approach in different types of domains. Sec-
tion 5 tums to a more complex, user-modeling task.
The final section concludes with some discussion.

2 Automated Rationalization

We propose to create, for a given problem, two in-
dependent modules: a reasoner and a rationalizer.

The reasoner takes some input and maps it to an out-
put using whatever techniques it can to achieve high-
est performance. For our applications, these will be
connectionist, statistical, or otherwise highly dis-
tributed leaming techniques. The rationalizer takes
both the input to the reasoner and its output—the
rationalizer’s job is to produce a plausible expla-
nation of why the reasoner mapped the input onto
that particular output. However, the rationalizer 1s
not allowed to look inside the reasoner. The orga-
nization is shown in Figure 1. The two modules
are completely independent—they can be built by

separate teams of programmers, for example.

The sole criterion for the reasoner is performance

on the task. There are two criteria for the raqud-
1zer: coverage (how many input/output pairs 1t catl
explain or “explain away’”) and believability (HOW
plausible or palatable its explanations are to human
users of the system).

As for coverage, we distinguish between two types
of rationalizers. A general-purpose rationalizer is
able to explain any input/output pair, A general-
purpose rationalizer is completely portable with re-
Spect to reasoners, since it can explain any behavior.
A special-purpose rationalizqr only needs to explain
the subset of input/output pairs actually producible
from the specific reasoner it is hooked up to. In
one sense, special-purpose rationalizers are easier to
build, since they do not have to explain outlandish
behaviors. Yet they are more problematic in that
it may be hard to exactly characterize the subset of

possible behaviors produced by a given connection-
1St network.

The advantage of this organization is that it can
produce both high-performance reasoning and ex-
planations. We have also produced two leaming
problems, one for the reasoner and one for the ratio-
nalizer. While the reasoner will typically use some
neural or statistical learning method, improving the
performance of the rationalizer is somewhat more
difficult—we take up that topic in Section 6.

Our model draws its inspiration from both psycho-
logical and engineering concemns, which we tumn to
next.

Engineering Motivations

From an engineering point of view, we have two
design requirements: have good performance and
produce good explanations of the results. Our pro-
posal 1s modular, in that it breaks the task down
along these lines. By considering the problems sep-
arately, we can concentrate on what makes a good
explanation independently of how to find the right

dlISWCI.

In many domains, it 1s theoretically possible to con-
struct sound, complete, and consistent symbolic the-

ories, but it 1s practically very difficult. Automatic
learmning systems help to alleviate the knowledge ac-
quisition problem, but often do not represent knowl-

Ap_ important advantage of our Organization is porta-
bility. A general-purpose rationalizer is portable 1o



any reasoner that solves the task. If a new statisti-
cal technique comes along, we can completely redo
our reasoner without having to reconsider our ex-
planation facility. This type of_ modularity is not
found in other hybrid connectionist-Symbolic archi-
tectures, e.g., those that draw symbolic rules out of
a backpropagation network.

Psychological Motivations

We have also been inspired to a degree by psy-
chological phenomena. We humans often find our-
selves constructing symbolic, logical explanations
for decisions after we have made those decisions.
Much of what we do is without explicit reasoning,
or symbolic reasoning, and yet we insist on having
explanations for all of our behaviors.

Social psychology supplies a wealth of information
on human rationalization. For example, the theory

of cognitive dissonance (Festinger, 1957), in which
an individual’s beliefs are modified in order to line
up with his actions, is well supported by thirty years
of experimental evidence.

Even more interesting phenomena come from neu-
ropsychology, particularly split-brain research. A
subject whose corpus collosum has been severed,
so that the left hemisphere of his brain cannot com-
municate with the right, can be induced to display
amazing powers of rationalization. In one experi-
ment (Gazzaniga, 1985), a subject is briefly shown a
divided picture: the left side of the picture contains a
snowy scene, and the right side contains a chicken'’s
claw. The snowy scene is available only to the nght
brain, while the chicken claw is available only to
the left. The subject’s task is then to choose match-
ing pictures from any array of cards in front of him.

Subjects typically solve the task correctly. For ex-
ample, the right brain guides one hand to rest on the

picture of a snow shovel, while the left brain picks
out a chicken’s head. However, when a subject is
asked to explain his answers, only the left brain is
able to issue verbal comments. Gazzaniga (1985)

reports;

...I asked [the subject], ‘“Paul, why did
you do that?”’ Paul looked up and without
a moment’s hesitation said from his left
hemisphere, “Oh, that’s easy. The chicken
claw goes with the chicken and you need a
shovel to clean out the chicken shed.”
Here was the left-half brain having to
explain why the left half was pointing to a
shovel when the only picture it saw was a
claw . .. The left-brain’s cognitive system
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Has handle v v v v

Handle on top

Handle on side v v

Bottom is flat v v v v v Y v v 4
Has concavity v v y v v v v v v
Concavity points up v v v v v v v v

Light v v v v v v v v

Made of ceramic v | v

Made of styrofoam v y v v
Made of paper Y v v
Expensive v v v v v
Fragile v v v v / v

Figure 2: The Extended Cups Domain (Shavlik and Tow-
ell, 1989)

needed a theory and instantly supplied one
that made sense given the information it
had on the particular task. It is hard to
describe the spell-binding power of seeing

such things ... [p. 72]

In short, our species has a special brain
component I will call the “interpreter.”
... This special interpreter accommodates
and 1nstantly constructs a theory to explain
why the behavior has occurred. [p. 5]

While we are not making or supporting any psy-
chological claims here it is interesting to note the
similarity between Gazzaniga’s “interpreter,” and
our rationalizer.

3 A Simple Example

Thus section shows how we can apply our ideas to
a simple domain. The problem is the extended cups
domain, a classification task introduced by Shavlik
and Towell (1989). The task is to identify an ob-
ject as CUP or NOT-CUP, based on twelve basic
features. Figure 2 shows ten example objects.

First, we build a reasoner that learns to perform this
task from examples. For example, we may use a
three-layer backpropagation network. Given an ex-
ample, the network will provide the correct classifi-
cation as a CUP or a NOT-CUP. Figure 3 shows one
such network, due to Shavlik and Towell (1989)

i1s a CUP or a NOT-CUP. Figure 4
nalizer’s rule base. The rules are wri

style, and are meant to be used in
with chronological backtracking.



Figure 3: A Connectionist Network That Solves the Cup
Classification Problem (Shavlik and Towell, 1989)

encode a very general cup definition, one that will
probably cover any object classified as a cup by
the reasoner. If these rules do not hold, e.g., if the
object is not stable, then more relaxed rules are tried.
Rule 6 produces an explanation on the order of “it’s
open and liftable, so it’s a cup.” These rules are
further relaxed until finally Rule 12 insists “it’s a
cup because it’s a cup.”?

Notice that the most useful rationalizations are pre-
sented to the user first.

The “prove not-cup’ rules are based on the idea of
a prototype. Rules 13—16 encode deviations from a
specific prototypical cup. The rules are ordered such

/ *

(1)
(2)
(3)
(4)

(3)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

Prove cup rules */

Cup :- stable, liftable, open.

stable :- flat.

liftable :- light.

open :- has-concavity,
concavity-points-upward.

open :- has-concavity.

Cup :!- open, liftable.

Cup :- open, stable.

Cup :- liftable, stable.

CUP" (= Open.

cCup :- stable.

cup :- liftable.

cup.

/* prove not-cup rules */

Not=gup =<
not-cup :- not-open.
not-cup :- not-stable.
not-cup :- not(liftable).
not-open :- not (has-concavity).
not-open :-

not (concavity-points-upward).
not-stable :- not(flat).
not-liftable :- not(light).
not-liftable :- not (graspable).
not—-graspable :-

has-handle-on-top.

not (has—-handle-on-side).
not-cup :- not (made-of-ceramic).

not—-cup.

that most blatant deviations from the prototype are
checked first. For example, if an object has a handle
across the top, the rationalizer seizes on this fact as
persuasive. Otherwise, if the object does not have
a concavity, then it is not open, so the rationalizer
reports (roughly) “it’s not a cup because it’s not
open,” and if the user presses, “it’s not a cup because
it has no concavity.” As before, we must fall back
on other rules if these should fail. If we are faced
with a very cup-like object which the reasoner has
declared NOT-CUP, then we might insist “it’s not a
cup because cups are made of ceramic” (Rule 23) or
“it’s not a real cup because it’s just not” (Rule 24).

Figure 4. Rationalizer for the Extended Cups Domain

in several respects. First, the cups domain does not
require much in the way of explanation or interac-
tion with a human user. (Rarely must one answer
the question “You say this is a cup ...but whay?”)
Second, the domain is small enough that one can
look into the connectionist network and report on
what it 1S actually doing. Therefore, our ideas are
not particularly suited to the cups domain. Charac-

teristics of appropriate and inappropriate domains

Note that Figure 4 is not a “theory” as normally = '* covered in the next section.

construed, since it is possible to prove both CUP
and NOT-CUP for any object. Such a contradiction
would allow a first-order theorem prover to start
drawing any conclusions at all, since p & —p implies
everything. Such contradictions are inherent in any
general-purpose rationalizer.

4 Good and Bad Domains

This section discusses characteristics of domains for

which automated rationalization ig dppropriate. At-

While this section has presented a concrete example  tractive characteristics include:

of automated rationalization, the example is flawed

'Here is where a good rationalizer might make use of a
general stylistic or diversionary tactics, of the flavor of lhos.e
employed by the ELIZA program (Weizenbaum, 1966) when it
had nothing to go on.



Users require explanations. There ar¢ many such
domains: diagnosis, prediction, etc. BasiC percep-
tual tasks, such as recognizing objects and under-
standing sentences, do not usually require explana-

tions.

The system’s explanations are not Intended to
change user’s behaviors. Since the rationalizer
is independent of the reasoner, it does not neces-
sarily reflect what the reasoner is actually doing.
Therefore its explanations should be aimed only at
placating the user, persuading the user, or perhaps
allaying the user’s fears. An example of a bad do-
main would be processing credit applications. If
a neural network rejects an application, we should
not offer a bogus rationalization (e.g., “you are in
a high-risk profession”), since the applicant may
take it as prescriptive (and demand the credit after
changing jobs).

High performance on the task is paramount. We
are not willing to trade performance for perspicuity.

The best model of the task is connectionist, sta-
tistical, or otherwise highly distributed. In the
previous section, we saw how a backpropagation
network was used to classify examples. We might
have used a small decision tree instead (Very large
decision trees, like backpropagation networks, are
hard to understand. If a reasoner uses a very large
decision tree, a rationalizer might be very useful.)
Note that most connectionist Systems are success-
ful inlow-level, perceptual tasks, which typically do
not require explanations. Itis not clear whether they
are better suited to low-level tasks, or whether their
lack of explanatory capabilities keeps them from
being applied to higher-level tasks. We are inter-
ested in high-level tasks which are best modeled by

non-symbolic techniques.

There are usually large amounts of conflicting
evidence for any proposition. Having evidence
for both p and —p gives a rationalizer more room to
construct coherent, self-consistent explanations.

There are no recognized experts. If the domain
has recognized experts, those experts will (as users)
shoot holes through bogus rationalizations, and (as
developers) be likely to prefer rule-based reasoners
that rival highly distributed models. Some examples
of “expert-free” domains are aesthetics, politics, and
emotion.

2 . TEu BT
In such cases, we can screen our rationalizations by feeding
hypothetical tes cases back into the reasoner and observing the
results.

Reasoning can be carried out without regard for
the palatability of explanations. Consider political
decision making. A politician may not be able to
“do the right thing” for fear that his constituency
will not buy his explanation. In such a case, It
18 difficult to separate reasoning from explanation,
since reasoning must take the form and substance of
explanations into account.

Different audiences may require different expla-
nations. If different audiences require (may be per-
suaded by) different types of explanations, then we
can build several rationalization modules, or we can
parameterize the rationalization module by charac-
teristics of the user. Unlike the situation in the pre-
vious paragraph, here a separation of reasoning and
explanation is very useful.

Of course, a domain need not have all of these char-
acteristics for automated rationalization to be of ser-
vice, but they all help. One type of domain that
has many of these characteristics is user-modeling,
which we explore next.

S A User-Modeling Domain

Consider the task of suggesting travel locations for
a client, given a large database of client prefer-
ences. The database might look like that of Fig-

ure 5. Here, clients c1,c¢3,...c, are listed across
the top, and travel locations ¢, t,...t, are listed
down the left side. Examples of clients might be
John and Mary; examples of travel locations might
be Waikiki and Taipei. After each trip, clients ex-
press their satisfaction with a number from 0 to 100.
These numbers (user preferences) appear in the fig-

ure. Blank squares indicate locations that a client
has never visited.

Given what we know about a client’s past prefer-
ences, we want to predict how the client will like
other locations. In other words, we want to fill in
the blank squares as accurately as possible. While
this domain is hypothetical, we expect many such
databases to be available in the future, and the fol-
lowing discussionis general with respect to all kinds
of similaruser-modeling tasks, such as recommend.-
ing novels to read or television shows to watch

First, we want to build a powerfy] re
fill in the blank squares of Figure

racy. There aIC many ways to approach this prob-
lem. One way is to cluster clients INtO stereotypes
which are then used as predictors of prefercnccs‘

(This was the basic approach of the GRUNDY sys-

dasoner that will
D with hlgh accu-
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Figure 5: Client Preference Database for Travel Desti-
nations

tem (Rich, 1979)). Here, we might use some clus-
tering technique such as AUTOCLASS (Cheeseman
et al.. 1988), a Bayesian reasoner.

A second way might be to train an auto-associative
neural network (e.g., (Peterson, 1991)) on the client
vectors ¢1,C2,...C,. The network would act as a
content-addressable memory, or patterm completion
facility, so that given some stated user preferences,
it would fill in the rest.

Yet a third method would be to use statistical mea-

sures such as linear correlation. For example, if

vectors t4 and ¢7 are highly correlated, then one
can be used as a predictor of the other. That is,
given sufficient instances of clients who have been
to both ¢4 and ¢7, we can come up with a formula like
ts = 0.82 - 17 + 13, with a coefficient of correlation
r = 0.79. Rome and Madrid might be correlated very
highly, Oslo and Athens correlated negatively, and
Boston and Denver correlated not at all. We can do
the same with clients—if we look at the places both
c3 and c11 have visited, we might find a high cor-
relation of preferences, such that c3 1s an accurate
predictor of cy1, and vice-versa. To fill in an empty
square, we make use of all filled-in squares in the
same row and same column, plugging numbers into
linear equations, weighting the results accordingly

to the absolute values of the various coefficients of

correlation (7).

A critical feature of all of these methods is their
distributed nature: potentially, the value of every
square in the database is relevant to every other
square. This makes compact explanations unlikely.
If we forced our reasoner to produce faithful expla-

nations, they might look like this:

1. You and 1536 other clients have been clustered
into Traveler Stereotype #761. Members of
this stereotype typically enjoy Aruba (estimated
value = 91).

2. Our neural network feels that you will en-
joy Anchorage, Alaska (estimated value = 86).
Hidden unit 132 is especially excited; its activa-
tion level is 0.92 due to its positively weighted
connections to input units 4 (Buenos Aires), 12

(Newfoundland), ...

3. Your stated preferences are highly correlated
with those of Mary Schexnayder of Butte, Mon-
tana. This indicates that you will enjoy Duluth
(she did). However, Duluth is correlated posi-
tively (y = 0.6x+20, r = 0.9) with Buenos Aires,
which you did not like (value = 25). Further-
more . ..

When we recommend a travel location, we need to
provide persuasive arguments to the user. These
arguments are not persuasive.

Yet there is a wealth of symbolic information on the
attractive and unattractive features of various travel
locations. This information can be gleaned from
travel brochures, from client interviews, etc. We
suppose that travelers do not consciously pinpoint
the actual reasons for liking or disliking certain lo-
cations, but do use rationalizations and are likely
to believe them. Our neural reasoning system will
pick up regularities, trends, and exceptions in the
data that people have not got any inkling about.
Given that our reasoner gives the highest perfor-
mance available, we decide to use 1t, and to develop
an independent rationalization model.

The basic task of the rationalizer 1s to amass evi-
dence both pro- and con- the location in question. If
the reasoner predicts a value of 91, say, the rational-
izer will present overwhelming positive evidence;
if the value is 12, the rationalizer will present over-
whelming negative evidence; and if the value is in

between, it will present a mix. Consider the follow-
ing factors, and how they can be used as evidence:

e Climate. Temperate weather a plus. Rain 2
minus. Heat can be either (“warm. tropical”
versus “‘hot, humid”).

o Sightseeing. A plus; list particulars.
e Isolation. Can be a plus or a minus.
e Inoculations. A minus.

e Accomodations. Can be a plus or minus.



o Food. Good food a plus. Bad food a minus.

o Shopping, airfare, etc.

Once we are done, here is how we expect the rea-
soner and the rationalizer to interact with a human

uscr.

UsER: Where should I go on vacation?

COMPUTER: I recommend Cancun, Mexico.
: This answer is produced by the
; reasoner, and 1s based on the
; user’s past stated preferences.

USER: Why?

COMPUTER: The beaches are among the
finest and whitest anywhere., Airfare
is cheap. Mayan rulns, one hour away,
are a must see. Tremendous seafood.
Laid-back atmosphere.

; This answer 1s produced by the
; rationalizer, which chooses
; positive features of the location.

USER: What about Mexico City?

COMPUTER: You would hate Mexico City.

; The reasoner produces this

; answer based on user’s stated

; preferences.
It is extremely hot and crowded.
While there are many sightseeing
opportunities, vyou will not feel
relaxed. Mexico City lies in a bowl
that is usually filled with smog.

; The rationalizer is using

; negative features of the location.

To the user, there is no visible evidence that a rea-
soner and a rationalizer are operating independently.
The interface appears to be helpful and seamless.
Of course, when the next user steps up and Inquires
about Mexico City, the reasoner may respond more
favorably, in which case the rationalizer will tell a
completely different story.

Other domains that are attractive form the viewpoint
of automated rationalization include:

I. Stock trading, A computerized stock trading
advisor will need a rationalization component
if it 1S win over customers.

2. Sports betting, Similarly, a service which sells
predictions of sporting event outcomes will
need a rationalization component, unless ‘mys-

terious computer-based system” is used as a
gimmick.

6 Discussion

We have described automated rationalization, a
technique for producing high-performance leamning
systems that can explain their behaviors. In this

section, we conclude and expand upon our basic
1deas.

Reasoning

It should be clear that what we call the reasoner
need not be a connectionist network. It can also
be a statistical model, a very large decision tree, or
even a case-based reasoner. The important criterion
is the difficulty of extracting symbolic explanations
from the system. That these systems often out-
perform easily-understood rule-based systems is a
fact of life strangely at odds with Occam’s razor,
which tells us to seek and prefer simple explana-
tions. Where apparent violations of Occam’s ra-
zor occur (e.g., (Dietterich and Bakiri, 1991)), our
separation of reasoning and explanation looks more
attractive.

Rationalizing

A general-purpose rationalizer is a powerful tool
that can be ported from one reasoning system to
another. It can also be used to explain the behav-
101s of other agents in the world. One mightimagine
that given enough knowledge, our rationalizer could
eventually serve as a full-fledged reasoner. But this
1s 1mpossible, since the rationalizer can construct
plausible explanations for any decision. Since all
decisions look plausible, the rationalizer has no ba-

sis on which to choose.

Integration

We have described a simple, loosely-coupled model
of integrating reasoning and rationalization. We
should also consider more tightly-coupled models.
Recall that a special-purpose rationalizer need only
explain the input/output pairs generated by a partic-
ular reasoner. A special-purpose rationalizer might
also look into (say) the weights on connections in
the reasoner to get inspiration for an explanation.

For example, it might consider only very heavil
welghted connections. d

Learning



rationalizers (Sections 3 and 5). In this final sec- References
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